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Fig. 1. Comparison of liquid-crystal shells rendered using our method (top) and polarized microscopy photos (micrographs) of similar liquid-crystal shells
(bottom). The shells are formed when a spherical liquid-crystal droplet suspended in liquid is injected with an optically isotropic liquid (see figure 9 for an
illustration of the geometry). The imaging is performed by passing linearly polarized light, emitted from a source at −𝑦, through the shell and then through
a polarizer oriented perpendicular to the source polarization (“cross polarized” light) and finally captured by a camera located at +𝑦. The orientation of
the polarizers is depicted in the bottom left corner of the figures. The shells were illuminated using blue (480nm), green (580nm), red (630nm) and white
(illuminant E) light. The artefacts around the left and right edges of the rendered shells are numerical errors. See subsection 5.1 for a more in-depth discussion.
The polarized microscopy photos (bottom) were adapted from “Transmission polarized optical microscopy of short-pitch cholesteric liquid crystal shells”, in
Emerging Liquid Crystal Technologies XI, by Geng, Y., Noh, J., and Lagerwall, J.P.F., ©2016 [Geng et al. 2016], reproduced with permission.

Wepresent a novel method for devising a closed-form analytic expression to
the light transport through the bulk of inhomogeneous optically anisotropic
media. Those optically anisotropic materials, e.g., liquid-crystals and elas-
tic fluids, arise in a plethora of established applications and exciting new
research, however current state-of-the-art methods of visually deducing
their optical properties or rendering their appearance are either lacking or
non-existent. We formulate our light transport problem under the context
of electromagnetism and derive, from first principles, a differential equa-
tion of the transmitted complex wave fields that fully account for the com-
plicated interference phenomena that arise. At the core of our proposed
rendering framework is a powerful mathematical representation, carefully
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1 INTRODUCTION
Optical anisotropy is the property of matter where electromagnetic
radiation (such as light) propagates with different phase velocities
depending on its polarization plane in that medium. This optical
property gives rise to what is known as Birefringence—sometimes
referred to as “double refraction”—where an electromagnetic wave
that refracts into an anisotropic material is split into two waves of
different velocities depending on the incident wave’s polarization.
Birefringence is source to a multitude of optical phenomena unique
to optically anisotropic materials.

In this paper our focus is on modelling and rendering the light
transport that happens in the bulk of those refractive, translucent,
inhomogeneous, birefringentmaterials.The term “inhomogeneous”
is used to refer to materials which exhibit continuously varying op-
tical properties, such as the refractive-indices, as opposed to ma-
terials that give rise to scattering by particles. Actually, scattering
is ignored in our light transport formulation as it is often negligi-
ble and does not contribute to the fringe patterns that characterize
the visual appearance of those materials. Our rendering framework
could be considered as an “anisotropic wave-optics” version of the
Refractive Radiative Transfer Equation [Ament et al. 2014], with
the main difference being that our framework deals with double
refraction and the resulting wave interference.

The fringe patterns that arise due to those wave interference
phenomena are difficult to predict. Indeed, a highly complex be-
haviour emerges when light propagates in such media: Due to the
spatially varying optical properties light keeps refracting into addi-
tional wavefronts (or “rays”, using geometric-optics terminology),
which results in infinitely many wavefronts, essentially a field of
amplitudes, all of which potentially interfere with each other. The
analysis of those patterns and the phase shift differentials that shape
them is known as anisotropic interferometry and is of interest for
a broad range of current and emerging applications and research,
such as a variety of liquid-crystal display (LCD) devices, spatial
light modulators, polarized-phase microscopy, organizing nanopar-
ticles, tunable liquid-crystal devices and elastic turbulence. How-
ever, the difficulty of experimental realization of theoretical pre-
dictions of the optical behaviours is a common problem [Ricardez-
Vargas andVolke-Sepúlveda 2010] and existingmethodologymostly
relies on costly and time consuming experimental methods. Like-
wise the inverse problem of deducing optical properties from po-
larized images remains a difficult obstacle and an area of active re-
search [Wu et al. 2016].

The primary contribution of this paper is a rendering framework
that addresses the problem of accurately rendering such materials
at interactive performance, a problem virtually ignored by current
research. Due to the complex nature of the problem, tracing rays
in such media is inadequate for the task of fully capturing the co-
herent light transport, instead we account for the entire field of am-
plitudes that arises. To that end, we use the electromagnetic wave
theory to formulate the light transport, under a few relaxations, as
an operator-valued differential equation and then present a mathe-
matical representationmethod, unseen so-far in computer graphics,
to devise an accurate analytic approximant for this light transport
equation.

This approach serves to create a rendering framework that accu-
rately captures the visual appearance of liquid-crystals under dif-
ferent configurations, as well as other anisotropic materials as they
appear under polarized imaging. Our presented framework is capa-
ble of rendering surfaces of different topologies, like liquid-crystal
droplets, microdroplets, shells and cells of arbitrary diameters and
sizes, under incident monochromatic light of any polarization, in-
tensity and at any incidence angle.

We limit the rest of our discussion to liquid-crystals as they pro-
vide an encompassing working example of an inhomogeneous opti-
cally anisotropic medium. In addition, they are ubiquitous in practi-
cal applications and designing and predicting a liquid-crystal’s opti-
cal properties and molecular orientation remains an open problem.

1.1 Motivation
The difficulty of deduction and elucidation of a liquid-crystal cell’s
mesoscopic structures and optical properties is well studied. The
process is oft done by visual inspection with polarised imaging de-
vices, or via a more rigorous approach that relies on costly exper-
imental setup [Bennis et al. 2017; Guo et al. 2016; Ogiwara et al.
2007]. Additional techniques, like state-of-the-art PolScope-based
methods [Shribak 2011; Shribak and Oldenbourg 2003] aim to pro-
duce a 2D spatial linear retardance map, however the provided in-
sight into the structure of highly inhomogeneous media, like liquid-
crystals, is limited. Interactive accurate rendering of those materi-
als would allow us to perform “inverse rendering”, where informa-
tion about the optical properties can be deduced from image mea-
surements.

In recent years research has also turned to the realm of machine
learning in attempts to employ neural networks to classify images
and deduce optical properties from polarized micrographs: Walters
et al. [2019] explore the possibility of using neural networks to clas-
sify topological defects in liquid-crystals, but their training and test
datasets were synthetically produced by a Monte-Carlo simulation
and do not resemble (nor aim to) realistic micrographs. Doi et al.
[2019] employ neural networks to aid in local structure analysis
of liquid crystal polymers and Smith et al. [2020] study the use of
convolutional neural networks to extract information from micro-
graphs and conclude that better simulation methods are required.
Datasets remain limited and expensive to generate, which hampers
the development of similar methods [Cao et al. 2018]. Our render-
ing framework can be used to generate synthetic, but realistic and
accurate (see figure 1), datasets.

Furthermore, just as deducing a liquid-crystal’s structure from
micrographs is difficult, so is the inverse problem of predicting the
optical response given a specific optical configuration. Nonethe-
less this problem is also of great interest: Fabrication and design of
liquid-crystals cells with predetermined optical behaviour remains
at the heart of a vast array, too numerous to exhaustively list, of
modern and future applications in the field of applied materials,
e.g., for bio-sensing [Lee et al. 2015], “smart” windows [Kim et al.
2015] or adaptive lens [Kaur et al. 2016]. However, the deduction of
the correct chemical composition, or the required intensity of the
applied electric field, is currently done via slow experimental data
acquisition and analysis.
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Interferometry is also used in non-contact applications (due to
risk factors, or practical considerations), such as medical applica-
tions in live tissue analysis [Bavigadda et al. 2012]. As biological
tissues tend to exhibit birefringence under some conditions (due to
photoelasticity), medical imaging is also a potential application of
our method.

Finally, our method also has applications in the study of the vi-
sualization of liquid-crystals [Callan-Jones et al. 2006; Čopar et al.
2013].

2 RELATED WORK
The electromagnetic theory concerning optical anisotropy is well
known and has been extensively studied for decades, yet tracing
rays in such media is still an area of active research, while the
problem of rendering the visual phenomena that arise in optically
anisotropic materials that exhibit inhomogeneity in their optical
properties has largely been ignored. Our derivation builds upon ex-
isting optical principles, yet we go beyond tracing individual rays
nor do we discretise our medium into layers. Instead, we formu-
late the problem as a differential initial value problem in order to
account for its continuous nature. Media that exhibit continuously
spatially varying optical properties are sometimes referred to as
“non-linear” (not to be confused with non-linear optics), and previ-
ous work has attempted to derive the radiative transfer through the
bulk of such materials: Gantri [2014] describes an iterative compu-
tational framework that employs the Legendre transform method
to approximate the radiative transfer. There has also been attempts
to render media with linearly varying refractive-indices via an an-
alytic solution to the ray equation and application thereof to pho-
ton mapping [Cao et al. 2010]; to perform relighting of refractive
objects [Sun et al. 2008] or caustics-aware dynamic volume illumi-
nation [Magnus and Bruckner 2018] by adjusting the ray-marching
step in accordancewith the gradient of the varying refractive-index;
to render fire effects [Pegoraro and Parker 2006]; to extend photon
mapping to non-linear volumes [Gutierrez et al. 2008]; to render
ray-traced images of gradient-index spherical or cylindrical lenses
[Suffern and Getto 1991]; and to ray-trace by using the eikonal
equation to model a medium with a spatially varying refractive-
index [Stam and Languénou 1996]. Finally, the Refractive RTE (Ra-
diative Transfer Equation) [Ament et al. 2014] presents a frame-
work for rendering participating media with a varying refractive-
index. However, all those works are performed under the context
of the simpler and more common isotropic optics, and thus far no
work has attempted to derive a fast and accurate light transport
framework for optically anisotropic media with continuously vary-
ing optical properties that accounts for wave interference.

On the other hand, there is a small body of work that contem-
plates the rendering of optically anisotropic materials with con-
stant optical properties. Tannenbaum et al. [1994]; Weidlich and
Wilkie [2008] render double refractions in polarized ray traced ren-
derers while Latorre et al. [2012] aims to render double refractions
of biaxial media by pre-computing a lookup table. An analytic for-
mulation for the spectral integral of the iridescence that arises in an
optically anisotropic homogeneous slab is presented by Steinberg
[2019]. Zhdanov et al. [2019] present another ray tracing method

in anisotropic media of partially polarized light represented via the
Stokes-Müller formalism. An intriguing approach to depth imaging
by positioning a crystal in front of a camera lens was introduced
by Baek et al. [2016]. Nevertheless, all those approaches essentially
discuss geometric ray-tracing in optically anisotropic media, and
as those formalisms are discrete they are ill-suited for considering
the entire amplitude field that arises when the medium’s optical
properties vary spatially.

Propagation in inhomogeneous optically anisotropic media. Exist-
ing research that deals with light propagation in stratified opti-
cally anisotropic media is mostly based on Berreman’s 4×4matrix
method [Berreman 1972], where an operator differential equation
is derived from Maxwell’s equations. The 4x4 matrix method has
given rise to a large body of research, where interference effects
are generally ignored, the derivations are constrained or are mostly
suitable for numerical work [Aslanyan et al. 2015; D. Tentori 2008;
Eidner et al. 1989; Stallinga 1999]. We reformulate the problem and
use a differentmathematical approach to solve the differential equa-
tion, fully accounting for interference induced by the entire field of
amplitudes. Additional research extracts the eigenmodes supported
by a metamaterial consisting of a twisted stack of periodic layers
[Askarpour et al. 2014], and investigates the colour shift in liquid-
crystal cells of uniform twist [De Meyere 1994]. Kolomiets [2013]
studies the polarization states in inhomogeneous non-depolarizing
media with elliptical phase anisotropy via an application of the dif-
ferential Jones and Müller matrices.

Geometric ray-tracing and multi-layered formalisms. Additional
research relating to inhomogeneous anisotropic media has been
largely confined to geometric tracing of a singular ray, in particu-
lar via an application of the Hamiltonian method for uniaxial [Slui-
jter et al. 2008] and biaxial [Sluijter et al. 2009] media, and later
extended to arbitrary coordinate systems [Akbarzadeh and Danner
2010]. Kravtsov et al. [2007] use Müller calculus to derive the evolu-
tion equation for Stokes vectors in a weakly anisotropic smoothly
inhomogeneous medium.

Other research employs multi-layered models: Nishidate [2013]
considers an inhomogeneous layered system where the optic axis
is fixed and performs the calculations in the principal coordinate
frame. Further work derives analytic formulations for transmission
and reflection in matrix form in a multi-layered structure [Kiasat
et al. 2014; Simonenko 2010], and discusses propagation in a twisted
nematic liquid-crystal cell modelled as a stack of anisotropic lay-
ers [Youn et al. 2014]. Those methods were later used to develop a
GP-GPU solution for tracing in inhomogeneous anisotropic media
[Guerreiro et al. 2017]. Postava et al. [2002] classify layers in amulti-
layered anisotropic structure into thin, and therefore optically co-
herent, and thick, ergo incoherent, layers. Another relevant work
predicts an inhomogeneous thin-film’s bidirectional scattering dis-
tribution function (BSDF) inMüllermatrix form using the distorted-
wave Born approximation [Germer et al. 2017]. Katsidis and Siap-
kas [2002] introduce coherence-transformation matrices, directly
related to Müller matrices, in order to model incoherent propaga-
tion between homogeneous layers. Jakob et al. [2014] presents a
general framework for deriving the BSDFs of arbitrary layered ma-
terials.
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Additional related work in the realm of computer graphics. Com-
puter graphics research that discusses polarized light transport and
wave optics has also been inspirational: Jarabo and Arellano [2018];
Mojzík et al. [2016] have also used the Müller calculus for polariza-
tion aware bidirectional ray tracing. Polarization under subsurface
scattering was discussed by Collin et al. [2014], who pre-computes
a tabulated bidirectional reflectance distribution function (BRDF)
by solving the vector radiative transport equation. The optical co-
herence of an ensemble of light waves was considered for construc-
tion of high-resolution BRDFs [Levin et al. 2013] and for the render-
ing of physically accurate diffractions induced by arbitrary surfaces
[Cuypers et al. 2012; Toisoul and Ghosh 2017; Werner et al. 2017;
Yan et al. 2018]. Finally, Bar et al. [2019] use a well-known result
in optics, which states that speckle fields are an instance of a multi-
variate Gaussian distribution, to device a Monte-Carlo simulation
of coherent light transport for the purpose of rendering speckle
fields.

3 PROPAGATION IN STRATIFIED INHOMOGENEOUS
ANISOTROPIC MEDIA

In this section we model and formalise our problem domain. Our
physical model consists of a stratified medium, that is a medium
that can be modelled as an infinite plane-parallel slab where the
optical properties vary continuously but only along the depth of
the slab. A stratified slab can be thought of as a stack of infinitely
many infinitesimally thin slices. Note that we do not limit ourselves
to any form of a “layered” (in the traditional sense) model and in-
deed the optical properties in our model are described by contin-
uous functions. Nor are we limited to materials where the optical
properties only vary spatially along the depth of the material, this
is due to the fact that different functions can be used each time we
sample the analytic approximation to the light transport (usually
at each rendered pixel), and because the footprint on the surface of
the material that participates in the light transport is generally on
the orders of magnitude smaller than the pixel size. Finally, we are
also not restricted to a slab model in practice: As the participating
footprint on the surface of the slab is small, any smooth surface ge-
ometry can be approximated very well by a plane in the footprint’s
region, that is our surface geometry is a piece-wise linear structure
with very small simplexes. Those claims will be empirically demon-
strated when we discuss results in section 5.

We begin by providing a short background concerning the rele-
vant optical theory of anisotropic optics. The curious reader is re-
ferred to Bloss [1961]; Born and Wolf [1999] for a far more com-
prehensive discussion of optical anisotropy or to Steinberg [2019]
where a very simple derivation of the relevant quantities is pro-
vided.

3.1 Background: Optical Anisotropy
Thepermittivity 𝜖 = 𝜖+𝑖𝜎 in an optically isotropic medium is a (pos-
sibly complex) scalar, where the complex part, 𝜎 , is the medium’s
conductivity. Birefringence arises when anisotropy is induced in
the electric susceptibility and the permittivity becomes a symmet-
ric rank 2 tensor [Born and Wolf 1999], in which case the medium
is described as optically anisotropic. Given the eigenvalues (also

known as principal permittivities) of the permittivity tensor, de-
noted 𝜖1,2,3 = 𝜖1,2,3 + 𝑖𝜎1,2,3, optically anisotropic media can be
classified into two categories:

• Uniaxial, where two of the eigenvalues are identical; and
• biaxial, where all the permittivities are distinct.

For simplicity and practicality (as most liquid-crystals are uniaxial)
our discussion is limited to uniaxial media. We denote the eigen-
value with multiplicity 2 as the ordinary permittivity, 𝜖𝑜 = 𝜖𝑜 + 𝑖𝜎𝑜 ,
and the eigenvalue with multiplicity 1 as the extraordinary permit-
tivity, 𝜖𝑒 = 𝜖𝑒 + 𝑖𝜎𝑒 . The material’s ordinary and extraordinary
indices-of-refraction are then

𝜂𝑜 =
√
𝜖𝑜 𝜂𝑒 =

√
𝜖𝑒 (1)

The permittivity tensor’s eigenvectors are called the principal axes
of the material, and the eigenvector associated with the extraordi-
nary permittivity is the distinguished direction known as the optic
axis, denoted ®a. No polarity arises in the optic axis, i.e. ±®a are phys-
ically equivalent.

SYMBOLS
𝜖𝑜,𝑒 Ordinary and extraordinary complex permittivities
𝜂𝑜,𝑒 Ordinary and extraordinary refractive-indices
𝜅𝑜,𝑒 Ordinary and extraordinary absorption coefficients
𝜙𝑜,𝑒 Ordinary and extraordinary phases
Δ𝜙 Phase shift
𝜆 Wave length
〈®a, ®b〉 Inner product between ®a and ®b
T𝑛 Taylor expansion operator (of order 𝑛)
𝔢 Error function that quantifies the accuracy of our method
𝚽Δ𝑦 (𝑦) Phase progression operator for propagation from 𝑦 to 𝑦 +

Δ𝑦
𝝇Δ𝑦 (𝑦) Absorption operator for propagation from 𝑦 to 𝑦 + Δ𝑦
A The 2 × 2 complex operator of the light transport ODE
PΔ𝑦 (𝑦) Propagation operator from 𝑦 to 𝑦 + Δ𝑦
TΔ𝑦 (𝑦) Transmission operator for propagation from 𝑦 to 𝑦 + Δ𝑦
Tin Transmission matrix into the medium
Tout Transmission matrix out of the medium
𝜓 2-dimensional complex Jones vector
𝜏 Thickness of rendered material
®a Optic axis of an anisotropic medium
®k Wavevector
®s Wave’s phase velocity direction (i.e. wavefront’s direction)
𝑒Ω The 2×2 complex operator that is the solution to the light

transport ODE
𝑓 , 𝑔1, 𝑔2, 𝑔3 Scalar complex functions that decompose 𝑒Ω
𝐾 Incidence parameter
𝑘 Wavenumber
𝑡𝜉𝜁 Fresnel transmission coefficient from a 𝜉-wave to a 𝜁 -wave

(𝜉, 𝜁 can be 𝑜, 𝑒, 𝑠 or 𝑝)
𝑈 (p, 𝑡) Plane wave, as a function of position and time

Table 1: List of symbols
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The material equations that supplement Maxwell’s equations de-
scribe the relation between the electric field vector ®E and the elec-
tric displacement vector ®D, viz. ®D = 𝜖 ®E, and a direct consequence
of the permittivity being a tensor is that ®E and ®D of a wave propa-
gating in an optically anisotropic medium no longer coincide [Born
and Wolf 1999]. This divergence gives rise to birefringence, where
an electromagnetic wave perceives different permittivity values de-
pending on the direction of its electric field. Waves in anisotropic
media are then classified as either ordinary waves, which always
perceive the ordinary permittivity 𝜖𝑜 , or extraordinary waves, with
effective permittivity 𝜖ef (see appendix C for an explicit equation)
being a value between 𝜖𝑜 and 𝜖𝑒 . The difference in phase veloci-
ties causes the wavevectors—which describe a wavefront’s direc-
tion and spatial frequency—denoted ®k𝑜,𝑒 , to diverge as well. We
further denote ®s to be the phase velocity direction of a wavefront:

®s𝑜 =
®k𝑜���®k𝑜 ��� ®s𝑒 =

®k𝑒���®k𝑒 ��� (2)

See figure 2 for an illustration of the propagation in an homoge-
neous anisotropic cell. It is worth noting that the law of reflection
and Snell’s law of refraction, as they are known in the context of
isotropic optics, do not apply to the extraordinary wave.

A medium’s degree-of-birefringence is defined as

Δ𝜂 = 𝜂𝑒 − 𝜂𝑜 (3)

and is used to quantify how birefringent a medium is: Greater val-
ues of |Δ𝜂 | result in larger divergence between ®k𝑜 and ®k𝑒 . When
Δ𝜂 > 0 (positive birefringence) the ordinary wave has a higher
phase velocity and vice versa under negative birefringence.

Sources of anisotropy. Optical anisotropy can arise via a variety
of reasons, for example:

• Solid crystals of non-cubic lattice systems are common bire-
fringent materials and the anisotropy arises naturally due to
the crystal’s lattice structure.

• Photoelasticity is optical anisotropy induced by elastic defor-
mations due to mechanical forces.

• Induced by electro-optical effects via an application of an ex-
ternal electric or magnetic field.

• Molecular structure can give rise to birefringence, with liquid-
crystals being a prime example.

• Metamaterials where small structural properties causes bire-
fringence, e.g., different carbon-metal flakes.

as well as other more exotic sources. Our focus is on liquid-crystals,
where the director field—the spatial configuration of the optic axis—
has the unique property of taking different shapes and forms due to
different surface anchoring and can change dynamically by an in-
troduction of an external electric field and/or flow. Inhomogeneity
isn’t limited to the optic axis but arises in addition in the permittiv-
ities, e.g., due to a temperature gradient (see section 5.2).

The explicit equations for the electric fields, wavevectors and the
effective index-of-refraction as perceived by a propagating wave,

are given in appendix C. Finally, the Fresnel transmission and re-
flection coefficients dictate the amplitude ratios between participat-
ingwaves at an interface between a couple of media.The Fresnel co-
efficients equations for isotropic-anisotropic, anisotropic-isotropic
and anisotropic-anisotropic interfaces are available in our supple-
mental material.

While our focus is on uniaxial materials, the rest of the paper is
also applicable, in theory, to biaxial materials (where 𝜖1 ≠ 𝜖2 ≠
𝜖3 ≠ 𝜖1) as well.

3.2 Light Propagation in Stratified Inhomogeneous
Anisotropic Media

Stratified inhomogeneous slab. We consider the following geom-
etry (see figure 2): A plane-parallel, horizontally infinite, optically
anisotropic slab of constant thickness 𝜏 , surrounded by a homoge-
neous, isotropic medium. Without loss of generality, our coordi-
nate system is chosen such that one of the interfaces (denoted the
“upper” interface) coincides with the 𝑥𝑧-plane (𝑦 ≡ 0), the 𝑦-axis
coincides with the slab’s normal vector and therefore the “lower”
interface is positioned at 𝑦 ≡ −𝜏 .

As discussed, the slab is modelled as a stratified inhomogeneous
medium, that is a vertical stack of homogeneous slabs, and the in-
homogeneity is then only𝑦-dependant.We start by considering the
discrete case, where each layer in the stack is of thickness Δ𝑦 > 0.
For simplicity we assume that the slab’s ordinary permittivity is
constant and the inhomogeneity arises in the extraordinary per-
mittivity and the optic axis only. 𝜖𝑒 (𝑦), 𝜎𝑒 (𝑦) and ®a (𝑦) are then
functions of 𝑦, and we restrict those to be real analytic on an open
set 𝐷 , such that [0, − 𝜏] ⊂ 𝐷 . Then, the optical properties of the
𝑛-th slab in the vertical stack, positioned at

−𝑛Δ𝑦 ≤ 𝑦 < − (𝑛 − 1) Δ𝑦

are given by 𝜖𝑒 (−𝑛Δ𝑦) and ®a (−𝑛Δ𝑦), as well as the constant 𝜖𝑜 .
In practice the assumptions of isotropy and homogeneity of the
surrounding medium are superfluous as is the assumption that the
slab’s ordinary permittivity is constant. It would be simple to elim-
inate those constraints, however we choose to retain them for the
sake of the discussion’s clarity.

Transmission into and out of the slab. Let𝑈 be a monochromatic
plane-wave of wavelength 𝜆 propagating in the upper medium,𝑦 >
0 (depicted in blue in figure 2):

𝑈 (p, 𝑡) = 𝑈0𝑒
𝑖
(
〈®k,p〉−𝜔𝑡+𝜑

)
(4)

with ®k being the wavevector,𝑈0 the peak magnitude,𝜔 the angular
frequency, 𝜑 the phase shift, 𝑡 the time variable and p the position.
For the rest of the discussion we ignore the concept of time and fix
𝑡 . We also define the wavenumber as 𝑘 = |®k| = 2𝜋

𝜆 . Without loss of
generality we also assume that ®k resides in the 𝑦𝑧-plane, denoted
as the incidence plane. Let 〈®k, p〉 = 𝑐0, for some constant 𝑐0, be a
wavefront of𝑈 that intersects the upper interface and refracts into
the slab at 𝑧 = 𝑧0. Then the complex amplitude of the incident light
can be expressed by a Jones vector, a complex two-dimensional vec-
tor which describes fully coherent light. The incident Jones vector
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Fig. 2. (a) Illustration of light refracting through an homogeneous uniaxial crystal. The splitting of the incident wavefront into ordinary (blue) and extra-
ordinary (red) wavefronts is demonstrated. Note that while the permittivity of the surrounding medium, 𝜖𝑖 , is a scalar, the crystal’s permittivity, 𝜖cry, is a
rank 2 symmetric tensor that gives rise to the ordinary and extraordinary refractive-indices once diagonalized. The direction of the optic axis of the crystal,
®a, is illustrated as well via short cyan spikes throughout the medium. (b) A discrete stack of homogeneous slabs, each of thickness Δ𝑦 and with distinct
optical properties, is known as a stratified medium. (c) When Δ𝑦 → 0 the discrete stack becomes a continuous inhomogeneous slab of thickness 𝜏 , where the
permittivity and optic axis are now 𝑦-dependant functions analytic in some open interval 𝐷 such that [0, − 𝜏 ] ⊂ 𝐷 . A plane wave𝑈 (𝑝, 𝑡 ) , incident at angle
𝜃 , is depicted in blue. Note that as the system is not discrete a continuous region of length 𝑐 of the incident wavefront (highlighted in blue) participates in
the radiative transfer through the bulk of the medium (highlighted in a violet-to-orange gradient). Finally, the exitant radiation𝜓out is depicted in orange.

at point p𝑎 = [ 0,0,𝑧0 ]𝑇 is then

𝜓

����
p𝑎

=

[
𝜓𝑠
𝜓𝑝

] ����
p𝑎

=

[
𝑈𝑠 (p𝑎)
𝑈𝑝 (p𝑎)

]
(5)

where𝑈𝑠,𝑝 are the complex amplitudes of the incident plane-wave
projected onto the incidence plane (s-polarized) and onto the plane
spanned by the wavevector ®k and the 𝑥-axis (p-polarized), respec-
tively. To express the amplitudes of the ordinary and extraordinary
waves, that arise once the incident wave is refracted into the slab,
we keep using complex two-dimensional vectors, which are some-
times called “extended Jones vectors” [Yeh 1982]. The subtle distinc-
tion is that while (“common”) Jones vectors are typically used to
describe the orthogonal amplitudes of a wave, the wavevectors of
ordinary and extraordinarywaves, ®s𝑜 and ®s𝑒 , do not coincide in gen-
eral nor are their electric fields perpendicular. However in practice
this distinction is of no import, as the ordinary and extraordinary
waves are intrinsically related, and as the notation is identical we
drop the “extended” moniker. Then, the amplitudes immediately af-
ter refraction are

𝜓

����
p𝑎

=

[
𝜓𝑜
𝜓𝑒

] ����
p𝑎

= Tin ·𝜓
����
p𝑎

Tin =

[
𝑡𝑠𝑜 𝑡𝑝𝑜
𝑡𝑠𝑒 𝑡𝑝𝑒

]
(6)

with Tin being the transmission matrix from the incident wave to
the first layer (𝑦 ∈ [−Δ𝑦,0)) of the stratified slab. The first subscript
of each of the Fresnel coefficients 𝑡 indicates the type of source
wave and the second subscript the type of destination wave, e.g.,
𝑡𝑠𝑒 is the Fresnel coefficient for an s-polarized source wave to an
extraordinary destination wave.

As 𝜖𝑜 is identical for all layers, by assumption, thewavevectors ®s𝑜
remains constant as well. Therefore the ordinary wavefronts have

the same direction of propagation in all layers. Then, for conve-
nience and without loss of generality, we choose the exit point pout
as the intersection between the lower interface (𝑦 ≡ −𝜏) and the ray
in direction ®s𝑜 from point p𝑎 (the path p𝑎pout in figure 2) and set
𝑧0 such that pout lies on the 𝑦-axis.

Our problem statement is then to find an analytic expression for
𝜓
��
pout

, in which case the final solution would then be

𝜓out = Tout ·𝜓
����
pout

Tout =

[
𝑡𝑜𝑠 𝑡𝑒𝑠
𝑡𝑜𝑝 𝑡𝑒𝑝

]
(7)

where Tout is analogous to Tin and its Fresnel coefficients relate
the relevant amplitudes with the last layer of the slab as the source
and the surrounding medium as destination.

Propagation in stratified media. The incidence parameter 𝐾 for a
given wave incident to an interface between two media is defined
as the tangential component of the wavevector, that is

𝐾 = 𝜂 sin𝜃 (8)

where 𝜂 is the refractive-index as perceived by the wave travelling
in the source medium, and 𝜃 is the angle of incidence of a wavevec-
tor to an interface. The boundary conditions implied by Maxwell’s
equations give rise to the crucial observation that 𝐾 remains con-
stant in the interface between two media [Yariv and Yeh 2003]. Fur-
thermore, as the incident wave 𝑈 is a plane-wave by assumption,
and the top interface as well as all the interfaces between the layers
in the stratified slab are parallel by construction, 𝐾 remains iden-
tical for all participating waves in our system for a given 𝜃 , the
incidence angle of𝑈 to the slab. Observe that a direct consequence
of this in a 𝑦-dependant stratified model is that the wavevectors
of all ordinary participating waves at a given layer have identical
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Fig. 3. Illustration of the phase progression of the ordinary and extraordi-
nary waves in the discrete case. A homogeneous optically anisotropic slab
of thickness ℎ is portrayed and an incident wavefront (in blue) is refracted
into the slab. The horizontal displacement difference between the ordinary
and extraordinary waves,𝑑 , arises due the difference between the wavevec-
tors’ direction, and we are interested in calculating the relative phase shift
between the waves induced by the slab. The phase of a wavefront at the exit
point 𝑅 relative to its initial phase at the entry point (𝑃𝑎 for the ordinary
wavefront and 𝑃𝑏 for the extraordinary) is easily deduced by computing
the optical path length travelled by the wave inside the slab. However, due
to the offset 𝑑 between the refraction points the incident plane-wave trav-
els the additional path 𝑄𝑃𝑏 before refracting as an e-wave. That distance,
denoted𝑏, is then trivially inferred geometrically, viz.𝑏 = 𝑑 sin𝜃 . The addi-
tional optical path length is then 𝑑𝐾 and the induced phase shift is 𝑒𝑖𝑘𝑑𝐾 .
Note that as 𝐾 is preserved for all participating waves, the source medium
could be either isotropic or anisotropic.

direction, and a similar conclusion follows for the extraordinary
waves.

Therefore, the complex amplitudes of a wavefront (originating
from either an isotropic or anisotropic source medium) at a point
p differs from its complex amplitude at a point p′ = p + [ 0,0,𝑑 ]𝑇
only by a phase shift that can be trivially deduced geometrically
(as illustrated in figure 3). That phase shift depends only on the
distance 𝑑 and the constants 𝑘 and 𝐾 , which implies that we can
always deduce𝜓

��
p′ given knowledge of𝜓

��
p.

Following that conclusion, we redefine𝜓 (𝑦) to be the aggregated
Jones vector of the amplitudes of the all participating waves which
refract into the slab and reach depth 𝑦 on the line p𝑎pout. As ex-
plained, given𝜓 (𝑦0) for some𝑦0 we can compute𝜓 (𝑦0 − Δ𝑦), that
is it holds that

𝜓 (𝑦0 − Δ𝑦) = PΔ𝑦 (𝑦0)𝜓 (𝑦0) (9)
wherePΔ𝑦 is a linear operator that describes the light propagation
through the homogeneous layer and is composed of three opera-
tors, the transmission operator TΔ𝑦 , the phase operator 𝚽Δ𝑦 and
the absorption operator 𝝇Δ𝑦 :

PΔ𝑦 (𝑦0) = TΔ𝑦 (𝑦0) · 𝚽Δ𝑦 (𝑦0) · 𝝇Δ𝑦 (𝑦0) (10)

Transmission operator. The transmission operator describes the
amplitude ratios of the ordinary and extraordinary waves refract-
ing from 𝑦 ≡ 𝑦0 to the next layer at 𝑦 ≡ 𝑦0−Δ𝑦 as well as the cross
(ordinary to extraordinary and vice versa) energy transfer:

T (𝑦0,Δ𝑦) =
[
𝑡𝑜𝑜 𝑡𝑒𝑜
𝑡𝑜𝑒 𝑡𝑒𝑒

] ����𝑦0−Δ𝑦
𝑦0

(11)

The Fresnel transmission coefficients are derived by utilizing the
boundary conditions implied byMaxwell’s equations [Lekner 1991].
If we ignore the back-reflected energy, those coefficients can be
simplified significantly (see appendix E).

Absorption operator. Theabsorption operator 𝝇 expresses the por-
tion of energy absorbed by the medium as an electromagnetic wave
travels through it. The absorption happens in accordance to the
Beer-Lambert law with the extinction coefficients

𝜅𝑜 = Im {𝜂𝑜 } = Im
{√
𝜖𝑜
}

𝜅ef (𝑦) = Im {𝜂ef (𝑦)} = Im
{√
𝜖ef (𝑦)

}
(12)

where Im {·} denotes the imaginary part. In addition to the extinc-
tion coefficients, the normalized distance a wavefront travels is also
required:

𝜈𝑜,𝑒 (𝑦0) =
��� [®s𝑜,𝑒 (𝑦0)]𝑦 ���−1 (13)

The geometric path length of travel in a layer is then 𝜈𝑜,𝑒 (𝑦0) · Δ𝑦
for the ordinary and extraordinary wavefronts, and the absorption
operator becomes

𝝇 (𝑦0,Δ𝑦) =
[
𝑒−

1
2
𝜈𝑜Δ𝑦 ·𝜅𝑜

𝑒−
1
2
𝜈𝑒Δ𝑦 ·𝜅ef

] ����
𝑦0

(14)

Clearly for non-conductive media, i.e. when 𝜎𝑜 , 𝜎𝑒 ≡ 0, it holds that
𝜂𝑜 , 𝜂𝑒 ∈ R and therefore 𝝇 ≡ I. The square root ( 12 in the exponents
in eq. 14) is taken as we deal with amplitude fields, and not the
intensities directly.

Phase progression operator. Finally, the phase operator 𝚽 serves
to advance the phases of the wavefronts as they propagate in the
layer by accounting for the optical distance (the geometric travel dis-
tance 𝜈Δ𝑦 multiplied by the refractive-index) of the ordinary and
extraordinary wavefronts both inside the slab as well as in the sur-
rounding medium before refraction into the slab. Due to 𝜓 (𝑦) re-
siding on the line p𝑎pout only the extraordinary wavefront gives
rise to additional optical distance outside the slab, which can be
computed geometrically in an identical fashion (see figure 3). The
phase operator then becomes

𝚽 (𝑦0,Δ𝑦) =
[
𝑒𝑖𝑘Δ𝑦 ·𝜙𝑜

𝑒𝑖𝑘Δ𝑦 · (𝜙𝑒+Δ𝜙𝑒 )

] �����
𝑦0

(15)

where the phases are
𝜙𝑜 = 𝜈𝑜 · 𝜂𝑜 𝜙𝑒 (𝑦0) = 𝜈𝑒 (𝑦0) · 𝜂ef (𝑦0) (16)

𝑘 is the wavenumber and the induced phase shift of the extraordi-
nary wavefront is

Δ𝜙𝑒 (𝑦0) =
[
(®s𝑒 )𝑧 𝜈𝑒 − (®s𝑜 )𝑧 𝜈𝑜

] ���
𝑦0

· 𝐾 (17)

Interference. As wavefronts keep splitting into new ordinary and
extraordinary wavefronts at each interface between the homoge-
neous layers, wave interference occurs—either constructively by
waves with similar phases or destructively by those with opposing
phases. In practicewave interference for coherent light is computed
by summing up the complex amplitudes of superposed waves (by
the principle of superposition of waves [Born and Wolf 1999]). This
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implies that wave interference is a linear operator and commutes
with the summation of amplitudes in the aggregated Jones vector
𝜓 (𝑦). Therefore, aggregating the amplitudes of the participating
waves at each layer produces correct interference, even if the ac-
tual interference occurs at a different, spatial or temporal, point in
the process.

3.3 Extending to a differential problem
In this subsection we look at the problem under the limit Δ𝑦 → 0,
in which case the discrete homogeneous slabs no longer exist but
instead we are looking at a medium with continuously varying op-
tical properties. Under this context we reformulate the problem as
an ordinary differential equation (ODE) to whichwe can then apply
analytic and semi-analytic methods to obtain an analytic approxi-
mation.

Differential equation derivation. We first begin with a couple of
assumptions to ensure correctness:

• Back-reflections, inside the bulk of the medium, are assumed
to be negligible. As mentioned, this simplifies the Fresnel
transmission coefficients greatly and allows us to only take
into account the downwards energy propagation.

• The incidence angle, 𝜃 , is restricted such that total-reflection
does not occur at any point along that slab, see appendix D
for the analytic constraints implied on 𝐾 in this case.

The first assumption essentially implies that the optical properties
of the slab do not change rapidly.

As total-reflection never occurs (by assumption), the operator-
valued function that maps 𝑦 ↦→ P is analytic in 𝐷 as a product of
analytic functions parameterized by 𝑦, and clearly limΔ𝑦→0P = I,
therefore𝜓 is continuous as a function of 𝑦. By using the definition
of the derivative and applying L’Hôpital’s rule we can write

d

d𝑦
𝜓 (𝑦) = lim

Δ𝑦→0

𝜓 (𝑦 + Δ𝑦) −𝜓 (𝑦)
Δ𝑦

=

=

(
lim

Δ𝑦→0

PΔ𝑦 (𝑦) − I

Δ𝑦

)
𝜓 (𝑦) =

=

(
lim

Δ𝑦→0

d

d (Δ𝑦)PΔ𝑦 (𝑦)
)
𝜓 (𝑦) = A (𝑦)𝜓 (𝑦) (18)

which, together with the boundary conditions at the upper inter-
face, describes an homogeneous ordinary operator-valued differ-
ential equation:

d

d𝑦
𝜓 (𝑦) = A (𝑦)𝜓 (𝑦)

𝜓 (0) = Tin𝜓
���
p𝑎

(19)

We define the dot diacritic as a shorthand for ¤𝑥 = limΔ𝑦→0
d

d(Δ𝑦) 𝑥 ,
then the linear operator A becomes (directly by differentiating eq.
10 and taking the limit):

A (𝑦) = lim
Δ𝑦→0

d

d (Δ𝑦)PΔ𝑦 (𝑦) =

=

[¤𝑡𝑜𝑜 − 1
2𝜈𝑜𝜅𝑜 ¤𝑡𝑒𝑜

¤𝑡𝑜𝑒 ¤𝑡𝑒𝑒 − 1
2𝜈𝑒𝜅ef

]
+ 𝑖𝑘

[
𝜙𝑜

𝜙𝑒 + Δ𝜙𝑒

]
(20)

with the explicit formulas for the ¤𝑡𝜉𝜁 coefficients provided in ap-
pendix E.

Equations 19, 20 epitomize our light transport problem, we now
turn our attention to constructing an analytic approximative ex-
pression for the differential equation.

At the homogeneous limit. To see that our derivationmakes sense
we briefly verify the solution at the homogeneous limit, that is
where the optical properties do not vary across the material. Then,
A and ®s𝑜,𝑒 are now independent of 𝑦. Furthermore, as under ho-
mogeneity T ≡ I and thus d

dΔ𝑦T ≡ 0, it holds that A is diagonal.
Therefore, as the operatorA commutes nowwith itself the solution
to the ODE (equation 19) is simply:

𝑒
∫ 𝜏
0
d𝑦A = 𝑒𝜏A =

=

[
𝑒−

1
2
(𝜏𝜈𝑜 )𝜅𝑜

𝑒−
1
2
(𝜏𝜈𝑒 )𝜅ef

] [
𝑒𝑖𝑘𝜏𝜙𝑜

𝑒𝑖𝑘𝜏 (𝜙𝑒+Δ𝜙𝑒 )

]
(21)

The values 𝜏𝜈𝑜,𝑒 are now the linear distances travelled by the ordi-
nary and extraordinarywaves throughout the entirematerial, there-
fore the first matrix is simply the absorption by the material. Sim-
ilarly, 𝜏𝜙𝑜,𝑒 become the phase progression due to optical path dis-
tance inside the material and 𝜏Δ𝜙𝑒 is the relative phase shift.

Equation 21 agrees with the formulation derived by Steinberg
[2019] (ignoring internal reflections) for the homogeneous case.

4 ANALYTIC SOLUTION TO THE LIGHT TRANSPORT
ODE

Given the differential equation 19, we denote the solution as 𝑒Ω .
That is 𝑒Ω is the complex 2 × 2 matrix that satisfies

𝜓 (𝑦) = 𝑒Ω (𝑦)𝜓 (0) (22)

We proceed by rewriting the operatorA as a sum of products of
scalar functions with constant matrices

A (𝑦) = 𝑎 (𝑦) I +
3∑
𝑗=1

𝑏 𝑗 (𝑦)X𝑗 (23)

where the decomposition is under the following basis

X1 =

[
0 1
0 0

]
X2 =

[
0 0
1 0

]
X3 =

[
1 0
0 −1

]
(24)

(the functions𝑎,𝑏1,2,3 are chosen such that the equality holds).Then,
the problem of computing 𝑒Ω is equivalent to the problem of find-
ing a solution to the following four scalar ordinary differential equa-
tions:

d

d𝑦
𝑔1 = −𝑏2𝑔21 + 2𝑏3𝑔1 + 𝑏1 (25)

d

d𝑦
𝑔2 = 2 (𝑔1𝑏2 − 𝑏3) 𝑔2 + 𝑏2 (26)

d

d𝑦
𝑔3 = −𝑏2𝑔1 + 𝑏3 (27)

d

d𝑦
𝑓 = 𝑎 (28)
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with initial conditions 𝑔1 (0) = 𝑔2 (0) = 𝑔3 (0) = 𝑓 (0) = 0. If
solutions to 𝑓 , 𝑔1, 𝑔2 and 𝑔3 were to be found, the final solution
would then become

𝑒Ω = 𝑒 𝑓
[
(1 + 𝑔1𝑔2) 𝑒𝑔3 𝑔1𝑒

−𝑔3

𝑔2𝑒
𝑔3 𝑒−𝑔3

]
(29)

Equation 29 serves as the first part of our primary contribution
and its derivation is provided in detail in appendix A. Note that this
is not an approximation, but an exact analytic expression for the
solution. Intuitively, the strength of this representation of the solu-
tion lies in the fact that we have factored out a considerable amount
of ”non-linearity” from the initial operator-valued ODE (equation
19) into the exponents in equation 29. As the functions 𝑓 , 𝑔1,2,3
are all complex, those exponents give rise to the highly oscilla-
tory behaviour with varying frequencies that the operator A ex-
hibits. However this behaviour is mostly eliminated from the scalar
functions 𝑓 , 𝑔1,2,3, and indeed, while solving the original operator-
valuedODE is virtually intractable, the scalar functions are farmore
amenable to analytic and semi-analytic methods.

In order to demonstrate the vast contrast between the behaviours
of A and the functions 𝑓 , 𝑔1,2,3, as an experiment we solved those
ODEs directly by quadrature usingMATLAB™’s ode45 ODE solver.
The runtime of the ODE solver when applied to equation 19 is on
the order of tens of hours (depending on input), while the scalar
functions are solved in seconds to minutes (on same input). See
section 5.3 for runtimes.

Physical meaning of the functions 𝑓 , 𝑔1, 𝑔2 and 𝑔3. The matrix
exponentials representation of the light transport ODE was gener-
ated by a purely mathematical approach. Nonetheless, some physi-
cal meaning can be extracted from the quantities in the solution 𝑒Ω
(equation 29).

Note that 𝑒 𝑓 serves to advance the overall complex amplitude of
the entire system, while 𝑒𝑔3 is essentially the complex amplitude
difference between the ordinary and extraordinary components.
The imaginary parts of 𝑓 and 𝑔3, therefore, carry the crucial sys-
tem phase information.

Finally, notice that when 𝑔1 ≡ 𝑔2 ≡ 0 no interference is present.
The functions 𝑔1 and 𝑔2 represent then the cross-component am-
plitude transfer and phase-shift.

4.1 Analytic Representations for 𝑓 and 𝑔1,2,3
While the ODE for the functions 𝑓 , 𝑔1, 𝑔2, 𝑔3 (equations 25-28) are
far ”better behaved” than the operator A, they still do no admit a
general analytic solution in closed-form. We exploit the tractabil-
ity of those scalar ODEs to analytic methods to first simplify the
expressions and then produce a closed-form approximative expres-
sion to the functions 𝑔1, 𝑔2 written as a finite sum of Gaussian inte-
grals. As 𝑓 and 𝑔3 are separable we simply employ a Taylor power
series to guarantee a solution to 𝑓 and𝑔3 for any analytic functions
𝑎, 𝑏1,2,3. The analytic methods that were employed are explained in
detail in appendix B, and in this subsection we list the final results:

𝑔1 (𝑦) ≈
√
2𝜋 · 𝑒2𝑔3 (𝑦)−

𝛼2

2 ·

·
∫ 𝑦

0
𝜙 (𝑖𝛼 + 𝑖𝛽𝜉) T𝑛

{
𝑒−2Re{𝑔3 (𝜉) }𝑏1 (𝜉)

}
d𝜉 (30)

𝑔2 (𝑦) ≈
√
2𝜋 · 𝑒−2𝑔3 (𝑦)+

𝛼2

2 ·

·
∫ 𝑦

0
𝜙 (𝛼 + 𝛽𝜉) T𝑛

{
𝑒2Re{𝑔3 (𝜉) }𝑏2 (𝜉)

}
d𝜉 (31)

𝑔3 (𝑦) ≈
∫ 𝑦

0
T𝑛 {𝑏3 (𝜉)} d𝜉 (32)

𝑓 (𝑦) ≈
∫ 𝑦

0
T𝑛 {𝑎 (𝜉)} d𝜉 (33)

with Re {·} denoting the real part, T𝑛 being the Taylor expansion
operator and the Gaussian function 𝜙 (𝑥) = 1√

2𝜋
𝑒−

𝑥2

2 . The values
𝛼, 𝛽 ∈ C are given by

𝛼 =
(1 − 𝑖) 𝑐1√

2𝑐2
𝛽 = (1 − 𝑖)

√
2𝑐2 (34)

where T2 {Im {𝑔3 (𝑦)}} = 𝑐1𝑦 +𝑐2𝑦2. See appendix B for the mean-
ing of 𝛼 and 𝛽 .

To compute 𝑔1 and 𝑔2 (equations 30-31) in closed-form we use
the following well-known identities of Gaussian integrals:∫ 𝑥

0
𝜙 (𝛼 + 𝛽𝜉) 𝜉𝑛 d𝜉 = 1

𝛽𝑛+1

𝑛∑
𝑚=0

(
𝑛

𝑚

)
(−𝛼)𝑛−𝑚 ·

·
[∫ 𝛼+𝛽𝑥

0
𝜙 (𝜉) 𝜉𝑚 d𝜉 −

∫ 𝛼

0
𝜙 (𝜉) 𝜉𝑚 d𝜉

]
(35)∫ 𝑥

0
𝜙 (𝜉) 𝜉2𝑛+1 d𝜉 = −𝜙 (𝑥)

𝑛∑
𝑘=0

2𝑛!(2)
2𝑘!(2)

𝑥2𝑘∫ 𝑥

0
𝜙 (𝜉) 𝜉2𝑛+2 d𝜉 = −𝜙 (𝑥)

𝑛∑
𝑘=0

(2𝑛 + 1)!(2)
(2𝑘 + 1)!(2)

𝑥2𝑘+1+

+ (2𝑛 + 1)!(2)
√
𝜋

2
erf

(
𝑥
√
2

)
(36)

where the !(2) denotes the double-factorial. For completeness we
derive those three identities in appendix B as well. The complex-
valued error function that appears in equation 36 can not be analyt-
ically evaluated in closed-form (using elementary functions), how-
ever the related Faddeeva function can be computed accurately by
a vectorized algorithm [Abrarov andQuine 2011, 2018] suitable for
GPU computations.

Note that a singularity arises when 𝑐2 = 0, in which case the qua-
dratic approximant for Im {𝑔3 (𝑦)} reduces into a linear function,
and the Gaussian integrals become simple exponential integrals.

Equations 30-33, together with equation 29, complete our pri-
mary contribution and provide a closed-form analytic expression to
the light transport solution 𝑒Ω for any optical properties described
as analytic functions.
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(b) 𝜋 -wall defect
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(c) Disclination ring defect at collapse
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(d) Ring defect at high voltages

Fig. 4. E12 liquid-crystal microdroplets rendered under cross-polarized light. The droplets are of 9 µm in diameter, illuminated by a 590nm light. The
configuration of the director field (with defects illustrated in red) as well as the orientation of the polarizers are depicted in the top right and bottom left
corners of the figures, respectively. The E12 nematic admits an ordinary refractive-index of 1.52 and an extraordinary refractive-index of 1.74 at room
temperature and at 590nm radiation. The refractive-index of the surrounding isotropic PDMS (polydimethylsiloxane) is 1.43. Due to the rapid change of
the optic axis, especially at the center in the radial configurations (a-b), artefacts arise due to accuracy fall-off of the method. Numeric imprecision errors
also arise around the edges. For comparison, micrographs of microdroplets with topologies similar to (b) and (d) can be seen in figure 5. See subsection 5.1
for further discussion.
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Fig. 5. An E12 liquid-crystal microdroplet with a diameter of 9.30 µm used
as amicroresonator shows the topological transformation themicrodroplet
undergoes when an external electric field is applied at increasing intensi-
ties. The microdroplet is viewed under polarized microscopy when subject
to (a) a 1.90𝑉RMS µm−1 field and (b) a 2.60𝑉RMS µm−1 field. The respec-
tive director configurations are shown in (c) as the defect topology changes
from a radial hedgehog defect into a 𝜋 -wall defect in the plane perpendic-
ular to the applied electric field, and in (d) once some threshold voltage is
reached the 𝜋 -wall eventually collapses into an equatorial disclination ring.
Reprinted with permission from: Springer Nature, “Electrically tunable liq-
uid crystal optical microresonators” by M. Humar, M. Ravnik, S. Pajk, I.
Muševič, ©2009 [Humar et al. 2009].

4.2 Practical Considerations
For the approximant forms of 𝑓 , 𝑔1,2,3 (eq. 30, 31, 32, 33) to make
sense we need to make an additional assumption: 𝑎,𝑏1,2,3 are ana-
lytic functions, therefore 𝑒−2Re{𝑔3 }𝑏1,2 are also analytic, and the
Taylor series of those function converge at some neighbourhood
around the expansion point, we then assume that this interval of
convergence contains [0, − 𝜏] and that the truncated series, up to
some expansion order 𝑛 chosen a priori, is reasonably accurate. In
practice this assumption holds almost always.

To generalize the solution 𝑒Ω (eq. 29) to any incidence angle, slab
thickness and wavenumber we first note that the incidence angle 𝜃
arises only in the incidence parameter 𝐾 , which remains constant
across all participating wavefronts, therefore 𝐾 is treated as an un-
known constant during integration and is taken as an input during
the evaluation of the solution. This allows us to integrate the func-
tions 𝑓 , 𝑔1,2,3 during the pre-computation stage per each material
only, and efficiently evaluate the solution 𝑒Ω at run-time for each
incident wavefront of any polarization state, intensity or incidence
angle. As the thickness of the slab, 𝜏 , is also an input to those func-
tions, it can also be varied at run-time, and the light transport up
to any point inside the slab can be easily evaluated.

Quantifying the error. As discussed, the error is dominated by
the divergence of the approximations for the solutions of 𝑔1 and
𝑔2 (eq. 30-31). In turn, the accuracy of those functions depends on
the accuracy of the quadratic representation of the imaginary part
of 𝑔3, viz. T2 {Im {𝑔3}}. We define the function 𝔢 (𝑦) that expresses
the count of phase cycles bywhich the highly oscillatory imaginary
exponential term in 𝑔1, 𝑔2 diverges when the phase is represented
by the quadratic approximant:

𝔢 (𝑦) = |Im {𝑔3 (𝑦) − T2 {𝑔3 (𝑦)}}| (37)

Based on our results, we have chosen the ad hoc value 𝜋
2 such that

when 𝔢 (𝑦) ≤ 𝜋
2 the solution 𝑒Ω is exact for all intents and purposes.
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Fig. 6. 122 µm E12 liquid-crystal radial droplets with homeotropic anchoring rendered under cross-polarized light of (left to right) 480nm, 585nm and
white light (illuminant E). The configuration of the director field (with defects illustrated in red) as well as the orientation of the polarizers are depicted in the
top right and bottom left corners of the figures, respectively. The optical configurations of the nematic and the isotropic surrounding medium are identical
to figure 4. The artefacts at the center are the same rendering errors that arise with smaller microdroplets as well due to the point defect at the center of the
droplet. The noise at the edges is spatial aliasing due to under-sampling. See subsection 5.1 for further discussion.

In practice, the solution renders accurate images for far greater 𝑦
values. This is mainly due to the fact that 𝑔1, 𝑔2 retain an accu-
rate oscillatory shape for a significant interval after the functions
diverge from the ground truth (see figure 13). The frequency of os-
cillation carries a far greater significance for the reproduction of
fringe patterns than the peak amplitudes.

Implementation details. The solution to the light transport equa-
tion, 𝑒Ω , is in practice simply an analytic form for the coherent
bidirectional transmittance distribution function (BTDF) of the ma-
terial, and can be easily integrated into any spectral renderer. Ren-
dering of optically anisotropic materials with our rendering frame-
work is thus a two-stage process, which we implemented as fol-
lows:

(1) Offline integRation. First, given a material’s optical prop-
erties (provided as arbitrary symbolic functions)we start with
generating analytic expressions for the functions 𝑓 , 𝑔1,2,3 by
symbolically integrating equations 30-33 using theMATLAB™
API. The computed analytic expressions are then consumed
by the GNU Compiler Collection (gcc) and the optimized in-
termediate GIMPLE representations are written out as GLSL
routines.

(2) RendeRing. Those generated artefacts are simply the ana-
lytic representations of 𝑓 , 𝑔1,2,3 that take as input the wave-
length, incidence angle and material thickness (in the form
of the wavenumber 𝑘 , incident parameter𝐾 and the distance
𝜏) for which the light transport equation is to be evaluated.
Those functions give rise to the solution 𝑒Ω (equation 29), i.e.
the BTDF, and require no specialized frameworks, like ODE
solvers, to be evaluated. Thus integration into any spectral
renderer is trivial.

Additional user-supplied variables can be defined as well, which
will also be taken as input arguments and evaluated at runtime.
Those variables can, e.g., vary the optical properties spatially across

the surface, a simple technique that has been used for our demon-
strated results.

See our supplemental material, where we include a sample imple-
mentation that renders the light transport through inhomogeneous
optically anisotropic materials with user-supplied optical proper-
ties and a light source of any wavelength and polarization.

5 RESULTS

5.1 Liquid-Crystal Droplets and Shells
Liquid-crystal droplets. “Interesting things happen when liquid

crystals are confined to small cavities” [NEM 1995]. Liquid-crystals
constitute a class of soft condensed matter that possess fascinat-
ing unique properties, granting them a great deal of practical appli-
cations. The molecular internal structure of liquid-crystals is typ-
ically of long rod-shaped molecules, inducing significant macro-
scopic anisotropic properties.The direction of the preferred orienta-
tion of thosemolecules—the direction of the optic axis—is described
by the nematic director field. The director field arranges itself such
that the elastic free energy of the liquid-crystal is minimized, and
depends on the topological shape of the liquid-crystal, the anchor-
ing at the boundary as well as other forces at play. When liquid-
crystals are suspended in liquid, spherical droplets formwhich usu-
ally give rise to topological defects in their structure. Those defects
stabilize or destabilize the structure of the director field, potentially
limiting its ability to transform its topological configuration, e.g.,
when an external electric field is applied. See de Gennes and Prost
[1993] for a comprehensive review on liquid-crystals.

At rest, with a homeotropic surface anchoring, a liquid-crystal
droplet takes the form of a radial hedgehog, with its entire direc-
tor field pointing directly outwards and a point defect arises at the
center (see figure 4a).The point defect can not be annihilated [Stark
2001], however it can morph into other defects [Kanke and Sasaki
2013]. When an external electric field is applied such a transfor-
mation occurs and the droplet undergoes significant topological
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Fig. 7. Fringe patterns that arise as a result of interference as light refracts through a E44 liquid-crystal plate of thickness 𝜏 = 0.80mm. Viewed under cross-
polarizers and 640nm light. One side of the plate was heated to 368K while the other remains at 278K, causing a temperature gradient that gives rise to
non-uniform changes in the liquid-crystal’s refractive-indices. As a result, the distance between the fringes depends on the heat diffusion. The extraordinary
refractive-index of the E44 is modulated from 1.8235 (𝑇 = 278K) to 1.7035 (𝑇 = 368K), while the ordinary refractive-index remains fixed at 1.53. The state
of the heat diffusion process is illustrated in the upper right corner as a plot: The 𝑥-axis corresponds to depth in the plate while the 𝑦-axis is temperature.
The figures are in chronological order from left to right, such that the figure on the left happens just after the process begins and the figure on the right is
once equilibrium is reached. Note that while the heat distribution and incident energy are azimuthally symmetric, the director field is not and therefore the

pattern is not radial. The director field is constant and set to about − 1

2
√
2
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√
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√
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2 ®z. See figure 8 and subsection 5.2 for an overview of the experiment.

Glass substrate

Liquid-crystal

Glass substrate
Electrodes

𝑙2𝑙1

𝜋
6

Light source

𝑦

𝑧

𝑥

Fig. 8. Illustration of an experiment involving liquid-crystal (in blue) sus-
pended in-between two flat glass plates (bright gray). Transparent, thin
layers of indium-oxide (black), which are evaporated onto the glass sub-
strates and act as electrodes in order to control the liquid-crystal’s director
field. A light source (green) emits a cone-shaped beam that passes through
the liquid-crystal plate and gives rise to an interference pattern that is visi-
ble on the screen (left). When one of the glass plates is heated, as described
in subsection 5.2, the liquid-crystal plate experiences heat diffusion and the
state of the diffusion process can be estimated by measuring the distance
between the fringes in the resulting pattern (see figure 7).

changes, which depend on its degree-of-birefringence, Δ𝜂. The ra-
dial hedgehog, when Δ𝜂 is positive, first transforms into a 𝜋-wall
defect in the plane perpendicular to the electric field; and at some
threshold voltage the defect finally breaks up and is expelled into

the surface resulting in a equatorial defect ring [Bodnar et al. 1991;
Lopez-Leon and Fernandez-Nieves 2011] (see figure 5).This process
was rendered using our method and can be seen in figure 4. As
liquid-crystal are a media where the optic properties can change
rapidly, especially around the defects, it is difficult to achieve a
precise analytic expression for the light transport. The radial mi-
crodroplet (figure 4a) was rendered with the light transport solu-
tion, 𝑒Ω , evaluated 2 to 4 times throughout the droplet for better
accuracy, nonetheless clear errors arise around the defect at the
center of the droplet. The 𝜋-wall defect (figure 4b) is notoriously
hard to render as the director field adopts a complex topology in
the interior regions of the droplet, this causes very large and very
small numbers to arise in the integrated analytic expression for the
functions 𝑓 , 𝑔1,2,3, which causes significant numeric imprecisions
when evaluated on the GPU. Nonetheless, the patterns are repro-
duced faithfully and agree with Humar et al. [2009]; Prishchepa
et al. [2008].

To help identify the topology, we visualize the orientation of the
director field using small insets in the top right corners of figures
4 and 6. The insets depict the droplet when viewed from the side
(looking in direction −𝑥 ) such that they are illuminated from the
bottom and the camera is located on top (same orientation as in
figures 5c, 5d).The black lines illustrate the direction of the director
field, i.e. the direction of the optic axis, inside the droplet while the
red lines illustrate the position and topology of the defect.

In order for our rendering method to apply to droplets we need
to approximate the incident surface with a flat surface, as discussed
previously. As the divergence between the ordinary and extraordi-
nary wavevectors is small, this is not an issue even with highly
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𝑡
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Fig. 9. Geometry of a liquid-crystal shell (in blue) of diameter 𝑑 and wall
thickness 𝑡 under homeotropic anchoring. The inner and outer isotropic
solutions are considered to be identical.

birefringent liquid-crystals like 5CB. The geometry of the surface
at the exit point is of no consequence as the entire light transport
concentrates at a single point on exit. Applying those principles al-
lows us to extend our method to almost arbitrary smooth surfaces.

Larger droplets and shells. We have also rendered larger droplets,
seen in figure 6, with different light wavelengths. At the edges of
those droplets the frequency of the fringe rings greatly exceeds the
sampling frequency and spatial aliasing arises. Those are classic
under-sampling artefacts, and similar behaviour was observed by
Steinberg [2019] when rendering homogeneous anisotropic media.

In addition, liquid-crystal shells comprising of the well studied
5CB (4-Cyano-4’-pentylbiphenyl) liquid-crystal with isotropic in-
teriors were rendered (see figure 1) using the presented method
and the patterns agree very well with similar shells that were ob-
served under polarized microscopy by Geng et al. [2016].The shells
are 200 µm in diameter with a wall thickness of 13 µm and admit
homeotropic anchoring of the director field at the surface (i.e., the
director field is pointing inwards at the surface), see figure 9 for
an illustration of the geometry of the liquid-crystal shell. The ordi-
nary and extraordinary refractive-indices of the nematic phase of
5CB are 1.5340 and 1.7070, respectively, at room temperature and
590 nm light [Tkachenko et al. 2006]. The surrounding medium, as
well as the isotropic mixture inside the shells, is assumed to be a
glycerol-water mixture, which admits a refractive-index of about
1.42 at a wavelength of 590 nm. Note that the fringe patterns of
the E12 microdroplets, once the point defect has collapsed into the
disclination ring defect (figures 4c, 4d), are akin to the fringe pat-
tern that arise in the center of the shells (figures 1). This is no coin-
cidence, and by comparing the director fields we observe that the
birefringence effect in both topologies are very similar:The director
field in the interior of the microdroplets generates very little bire-
fringence while both the shells and microdroplets have identical
surface anchoring, resulting in similar director fields at the region
close to the surface.

5.2 Heated Liquid-Crystal Plate
Measuring thermal gradients in crystals is another potential appli-
cation and is an area of active research [Kocharyan et al. 2015]. We
present a hypothetical experiment where a liquid-crystal plate is
subject to non-uniform heat, and show how our method can be ap-
plied.

Variations in the director field is themost common source of non-
homogeneity in liquid-crystals. However, a scenariowhere one side
of a crystal, or a liquid-crystal, plate is subject to high heat can
induce a refractive-indices gradient with respect to the heat diffu-
sion through the plate [Berman et al. 1992]. Our setup is as fol-
lows (see figure 8): A slab of thickness 𝜏 , with a light source emit-
ting a cone-shaped beam with angle 𝜋

6 that passes through the
sample causing interference patterns to form on the screen. The
liquid-crystal plate has uniform anchoring across the boundary and
the director field is electrically aligned in a single direction. One
side of the plate is subject to heat, 368K, while the other remains
at 278K. We assume the liquid-crystal used is E44, which has a
melting point—point of equilibrium between crystalline and liq-
uid states—of 272.15K and a clearing temperature, i.e. the temper-
ature at which the liquid-crystal becomes isotropic, of 373.15K
[Gauza et al. 2004]. The molecular structure of the liquid-crystal
gives rise to anisotropy in the thermal conductivity as well as opti-
cal anisotropy [Ahlers et al. 1994], however as the director field is
uniformly aligned, this can be ignored.

The refractive-indices of liquid-crystals fluctuate with tempera-
ture, especially the extraordinary refractive-index [Li et al. 2005].
To create an accurate model of the E44 nematic we curve fit the fol-
lowing linear function to E44’s extraordinary refractive-index as a
function of temperature

𝜂E44𝑒 (𝑇 ) = 2.1942 − 𝑇

750
(38)

with 𝑇 in Kelvin, while the ordinary refractive-index is kept fixed
at 1.53, approximating data measured by Li et al. [2005]. The ex-
traordinary refractive-index is then modulated through the slab
with respect to approximate solutions to the heat equation at var-
ious points in time, and the resulting slabs are rendered using our
method and shown in figure 7. The state of the thermal diffusion
process could then be estimated in a (liquid) crystal plate just by
measuring the distance between the isochromatic fringes in the
produced patterns. Notice that this technique is contact-free, that
is it requires no access to the side walls of the plate, a scenario that
complicates thermal imaging.

5.3 Evaluation
Finally, we have also created a hypothetical conductive slab where
the optic axis, the conductivity and the extraordinary permittivity
all vary simultaneously and independently (see our supplemental
material). This material is used for evaluation and shows that we
can accurately render inhomogeneous anisotropic media with mul-
tiple degrees of freedom. The setup is identical to the one used in
subsection 5.2 (see figure 8), and the rendered images can be seen
in figure 11. Those images were then compared against a ground-
truth that was generated by modelling the inhomogeneous slab as
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Material Evaluation Slab E12 LC microdroplet (hedgehog) E44 LC plate
Our method 69ms 48.50ms 58msRendering

(time per frame) 4k discrete layers ≈7700ms ≈8500ms (fails to converge) ≈8500ms (fails to converge)
Integration 19min 51 sec 4min 13 sec 26min
Optimization 31min 2 sec 64.30 sec 60min 56 secProgram generation
Instruction count 21.70 kdops 8.70 kdops 16.30 kdops
Scalar ODEs 7 sec 9 sec 15min 7 secode45 solver

(time per sample) Operator-valued ODE 6 h 26min 20 h 37min 20 h 25min

Table 1. Runtime performance of our method. We have evaluated three materials: The evaluation slab (figure 11), the E12 liquid-crystal microdroplet with
a radial hedgehog topology (figure 4a) and the E44 liquid-crystal plate under heat diffusion (figure 7). The resulting patterns were rendered at a 500 × 500
resolution on an NVIDIA® GeForce® RTX 2080Ti graphics accelerator and the frame times are listed. The rendering times of the brute-force method, using 4k
discrete homogeneous layers (used in figure 11), are shown as well and note that the more complicated materials fail to converge with any layer count due
to numerical problems. The program generation was done on an Intel® Core™ i9-9900K CPU and the runtimes of the symbolic integration and the program
optimization stages are provided, as well as the double-precision floating point instruction count of the generated programs. Finally, we list the runtimes of
MATLAB™’s ode45 ODE solver when solving the full operator-valued ODE (equation 19) in comparison to the system of four scalar ODEs (equations 25-28).

a stack of 4096 homogeneous anisotropic layers. The colour devia-
tions were calculated using the CIE DE2000 metric and are shown
in figure 11 as well. Compared with the ground-truth the fringe
distances in the generated patterns begin to diverge slightly with
thicker slabs, however otherwise the patterns are accurate. A nu-
merical evaluation was also performed by comparing the results
of our method with numerically differentiated values obtained via
MATLAB™’s ode45 ODE solver (see figure 10), and both evalua-
tions show very good agreement.

For completeness, we also detail the computational costs of the
presentedmethod in table 1, wherewe list render durations and pre-
computation timings as well as the instruction count of the gener-
ated GLSL programs. The program generation is done as described
in subsection 4.2. The programs were generated with a Taylor ex-
pansion order of 7. Significantly faster results can be obtained with
lower expansion orders, at the cost of potentially deteriorated ac-
curacy. However, performance has not been our focus and we did
not investigate further nor can our implementation be considered
optimal.

6 DISCUSSION AND FUTURE WORK
Themathematical framework intrinsic to our technique is an imme-
diate result of the Magnus expansion. We avoid using the Magnus
expansion directly as the nested integrals of nested commutators
(eq. 41) become exponentially unyielding to symbolic integration.
Insteadwe look at the representation of the solution as a finite prod-
uct of matrix exponentials subject to a chosen basis of a Lie alge-
bra. The neighbourhood where the representation applies is only
limited by the open set 𝐷 where the input functions are analytic.

This result—representation of the solution as a product of matrix
exponentials—which was proven by us in appendix A, in a fashion
transcends our discussion: We have shown that an operator-valued
ordinary differential equation, where the operator is any 2×2 com-
plex matrix, always has a unique solution, and the problem of find-
ing that solution is reduced to solving 4 scalar ODEs, which are
remarkably more tractable to analytic and semi-analytic method.
This conclusion does not depend on the discussion that preceded
it, and therefore has nothing to do with liquid-crystals or optical

anisotropy, per sē. Furthermore, the difficulties that we encoun-
tered when devising analytic expressions for the solutions of those
4 ODEs are characteristic to coherent light transport: Very rapidly
oscillating integrands due to the fast phase evolution in the visible
spectrum. We are therefore hopeful that our presented method can
be used or adapted to other problems, light transport or otherwise,
in the realm of computer graphics.

Future applications. As outlined briefly in subsection 1.1, we en-
vision the primary applications of our method to be two-fold:

(1) GeneRation of synthetic datasets. Development of ma-
chine learning approaches to deduce various types of infor-
mation from liquid-crystal micrographs is an area of active
research and a major difficulty is the acquisition of large
training data. Our rendering method could be utilized by fu-
ture research in order to render realistic datasets of micro-
graphs, efficiently and accurately.

(2) Deduction of optical pRopeRties fRom micRogRaphs. If
the topology of the sample is known then its optical prop-
erties, e.g., the refractive indices, can be deduced experimen-
tally by tuning the optical properties used for rendering until
the rendering matches the micrograph. This exact approach
was used by us to render the microdroplets and shells in fig-
ures 4, 1. Likewise, other data can be extracted, for example
consider the experiment described in figure 5. By deducing
which deformation of the director field gives rise to the op-
tical response captured by the micrograph, we can infer the
strength of the applied electric field (if the chemistry of the
microdroplet is known). This process could, in theory, be au-
tomated and we leave that for future work as well.

Furthermore, while in this paper we keep our attention focused
on liquid-crystals—which provide an interesting and comprehen-
sive example of inhomogeneous optically anisotropic media—our
method can also be applied to other materials that exhibit spatially
varying optical anisotropy. For example, optical anisotropy can be
induced in (otherwise isotropic) translucent dielectrics when sub-
ject to mechanical stress, a phenomenon known as photoelasticity.
The induced degree-of-birefringence is proportional to the stress
magnitude and the optic axis aligns with the direction of stress.
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Fig. 10. Plots of the errors of (a) the peak amplitude of ordinary wave once refracted though the slab; (b) the peak amplitude of the extraordinary wave; (c)
the ordinary wave’s phase (logarithmic plot); (d) the extraordinary wave’s phase (logarithmic plot). Plotted for a range of values for 𝜏 , the slab’s thickness
and 𝜃 , the incident angle, using the evaluation slab. A 500nm wavelength light was assumed.
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1 2 3 4 5 6 7
Δ𝐸∗00

Fig. 11. Interference patterns generated by the evaluation slab (shown on the left in each column) with 𝜏 ranging from 0.25mm to 0.75mm, rendered using
(left to right) blue light (485nm), orange light (600nm) and white light (illuminant E). Viewed under cross-polarizers. Those rendered patterns were evaluated
against a ground-truth that was modelled and rendered as a stack of 4096 homogenous layers (not shown). The errors between the images rendered using
our method and the ground-truth were quantified using the CIE DE2000 formula, and the colour-coded images of Δ𝐸∗00, the CIE DE2000 values, are shown
(on the right in each column). As the slab gets thicker the distance between the fringes deviates slightly (<10%) from the ground-truth, however the patterns
are still faithfully reproduced. Minor colour deviations also arise with Δ𝐸∗00 values of up to 2 and usually less than 1, indicating very good accuracy.
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This has made photoelasticity of great interest in stress analysis,
e.g. in masonry, and our method can be used to render the expected
isochromatic fringe patterns that arise given a specific stress field.

Optical coherence. We have assumed a fully-coherent monochro-
matic light ensemble modelled as a plane-wave, however physical
light sources are neither truly monochromatic nor infinitely coher-
ent. Optical coherence is the spatial and temporal correlation be-
tween the periodic distributions formed by light ensembles and as
this correlation diminishes so does the ensemble’s ability to be su-
perposed and interfere [Mandel and Wolf 1995]. Spatial coherency
of a light source can be described by the coherence area Δ𝐴 and ap-
proximated by an order of magnitude relation: Δ𝐴 ∼ 𝜆2/Θ [Man-
del and Wolf 1995], where Θ is the solid angle subtended by the
source. See appendix D where a formulation for the maximal possi-
ble thickness, 𝜏 , as a function of coherence size and incidence angle
is provided.

Incoherent energy is commonly aggregated by summing up the
intensities (incoherent addition) of the coherent elements, while
the loss of coherency is approximated by a coherency kernel (see,
e.g., Dong et al. [2015]; Yan et al. [2018]), which is typically a Gauss-
ian matching experimental data [Mashaal et al. 2012]. Those princi-
ples could be applied by using a multi-layered structure of inhomo-
geneous layers and modelling coherency loss between the layers;
this approach has been extensively studied (see related work in sec-
tion 2) and is outside the focus of our work.

Lastly, our assumption of an incident plane-wave allows us to fix
the incidence parameter 𝐾 and facilitates the discussion in section
3. However, it also effectively restricts the scope of our developed
formulations to the Fraunhofer region (far-field) only.

Accuracy. The accuracy is generally dominated by the accuracy
of the functions 𝑔1 and 𝑔2, which are effectively limited by the di-
vergence of the quadratic approximant for the imaginary part of
𝑔3. Therefore the error is quantifiable by the function 𝔢 (equation
37). This information allows us to understand, at run-time, how ac-
curate the solution is for a given set of input parameters, and if
needed, dynamically break up the bulk of the medium into a set
of thinner (inhomogeneous) layers and evaluate the coherent light
transport at each layer separately. We employed this technique for
the rendering of the E12 liquid-crystal microdroplets (figure 4) in
order to extend the accuracy of the method to the desired domain.

Scattering. We have ignored scattering and back-reflections in-
side the bulk of the anisotropic medium as it is beyond the scope of
this paper. Nonetheless, this energy can not always be neglected.
Simple numeric radiative transport techniques like the “Adding”-
method [Prahl 1995] can give rise to a multi-layered framework
of inhomogeneous layers, which considers the internal reflections
between the layers (e.g., Katsidis and Siapkas [2002]), while non-
discrete methods could build upon a combination of our framework
and Berreman’s 4x4 matrix method [Berreman 1972].

7 CONCLUSION
We have presented a novel rendering technique, formulated under
the electromagnetic wave theory, that computes the amplitudes
and phases of light propagating through arbitrary inhomogeneous

stratified anisotropic media via an analytic approximation to the
light transport that accounts for the entire field of amplitudes that
arises in the bulk of suchmedia. Our rendering framework is robust,
produces physically accurate images at interactive frame-rates, or-
ders of magnitude faster than established research, and provides an
analytic error estimate.

REFERENCES
1972. I: Scalar Riccati Differential Equations. In Riccati Differential Equations,

William T. Reid (Ed.). Mathematics in Science and Engineering, Vol. 86. Elsevier,
1 – 8. https://doi.org/10.1016/S0076-5392(08)61166-2

1995. Nematic Configurations Within Droplets. WORLD SCIENTIFIC, 99–181. https:
//doi.org/10.1142/9789812831910_0003

S.M. Abrarov and B.M. Quine. 2011. Efficient algorithmic implementation of the
Voigt/complex error function based on exponential series approximation. Appl.
Math. Comput. 218, 5 (Nov 2011), 1894–1902. https://doi.org/10.1016/j.amc.2011.
06.072

Sanjar M. Abrarov and Brendan M. Quine. 2018. A rational approximation of the
Dawson’s integral for efficient computation of the complex error function. Appl.
Math. Comput. 321 (Mar 2018), 526–543. https://doi.org/10.1016/j.amc.2017.10.032

Guenter Ahlers, David S. Cannell, Lars Inge Berge, and Shinichi Sakurai. 1994. Thermal
conductivity of the nematic liquid crystal 4-n-pentyl-4’-cyanobiphenyl. Physical
Review E 49, 1 (Jan 1994), 545–553. https://doi.org/10.1103/physreve.49.545

Alireza Akbarzadeh andAaron J. Danner. 2010. Generalization of ray tracing in a linear
inhomogeneous anisotropic medium: a coordinate-free approach. J. Opt. Soc. Am.
A 27, 12 (Dec 2010), 2558–2562. https://doi.org/10.1364/JOSAA.27.002558

Marco Ament, Christoph Bergmann, and Daniel Weiskopf. 2014. Refractive Radiative
Transfer Equation. ACMTrans. Graph. 33, 2, Article 17 (April 2014), 22 pages. https:
//doi.org/10.1145/2557605

Amir Nader Askarpour, Yang Zhao, and Andrea Alù. 2014. Wave propagation in
twisted metamaterials. Physical Review B 90, 5 (Aug 2014). https://doi.org/10.1103/
physrevb.90.054305

A. L. Aslanyan, L. S. Aslanyan, and Yu. S. Chilingaryan. 2015. On the jones matrix
method in a twisted anisotropic medium. Optics and Spectroscopy 119, 5 (01 Nov
2015), 869–874. https://doi.org/10.1134/S0030400X15100069

Seung-HwanBaek, DiegoGutierrez, andMinH. Kim. 2016. Birefractive Stereo Imaging
for Single-shot Depth Acquisition. ACM Trans. Graph. 35, 6, Article 194 (Nov. 2016),
11 pages. https://doi.org/10.1145/2980179.2980221

Chen Bar, Marina Alterman, Ioannis Gkioulekas, and Anat Levin. 2019. AMonte Carlo
framework for rendering speckle statistics in scattering media. ACM Transactions
on Graphics 38, 4 (Jul 2019), 1–22. https://doi.org/10.1145/3306346.3322950

Viswanath Bavigadda, Emilia Mihaylova, Raghavendra Jallapuram, and Vincent Toal.
2012. Vibration phase mapping using holographic optical element-based electronic
speckle pattern interferometry. Optics and Lasers in Engineering 50, 8 (Aug 2012),
1161–1167. https://doi.org/10.1016/j.optlaseng.2012.01.020

N. Bennis, I. Merta, A. Kalbarczyk, M. Maciejewski, P. Marc, A. Spadlo, and L.R.
Jaroszewicz. 2017. Real time phase modulation measurements in liquid crystals.
Opto-Electronics Review 25, 2 (Jun 2017), 69–73. https://doi.org/10.1016/j.opelre.
2017.03.004

Lonny E. Berman, Michael Hart, and Sushil Sharma. 1992. Adaptive crystal optics for
undulator beamlines. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 321, 3 (Oct 1992),
617–628. https://doi.org/10.1016/0168-9002(92)90074-e

Dwight W. Berreman. 1972. Optics in Stratified and Anisotropic Media: 4×4-Matrix
Formulation. J. Opt. Soc. Am. 62, 4 (Apr 1972), 502–510. https://doi.org/10.1364/
JOSA.62.000502

F. Donald Bloss. 1961. An introduction to the methods of optical crystallography / F.
Donald Bloss. Saunders College Philadelphia.

Vladimir G. Bodnar, Alexandr V. Koval’chuk, Oleg D. Lavrentovich, V. M. Pergamen-
shchik, and V. V. Sergan. 1991. <title>Threshold of structural transition in ne-
matic drops with normal boundary conditions in AC electric field</title>. In Liquid-
Crystal Devices and Materials, Paul S. Drzaic and UziEditors Efron (Eds.). SPIE.
https://doi.org/10.1117/12.44699

M. Born and E.Wolf. 1999. Principles of Optics. Cambridge University Press. 952 pages.
A. C. Callan-Jones, Robert A. Pelcovits, V. A. Slavin, S. Zhang, D. H. Laidlaw, and

G. B. Loriot. 2006. Simulation and visualization of topological defects in nematic
liquid crystals. Phys. Rev. E 74 (Dec 2006), 061701. Issue 6. https://doi.org/10.1103/
PhysRevE.74.061701

Chen Cao, Zhong Ren, Baining Guo, and Kun Zhou. 2010. Interactive Rendering of
Non-Constant, Refractive Media Using the Ray Equations of Gradient-Index Optics.
Computer Graphics Forum 29, 4 (Aug 2010), 1375–1382. https://doi.org/10.1111/j.
1467-8659.2010.01733.x

ACM Trans. Graph., Vol. 39, No. 3, Article 22. Publication date: April 2020.

https://doi.org/10.1016/S0076-5392(08)61166-2
https://doi.org/10.1142/9789812831910_0003
https://doi.org/10.1142/9789812831910_0003
https://doi.org/10.1016/j.amc.2011.06.072
https://doi.org/10.1016/j.amc.2011.06.072
https://doi.org/10.1016/j.amc.2017.10.032
https://doi.org/10.1103/physreve.49.545
https://doi.org/10.1364/JOSAA.27.002558
https://doi.org/10.1145/2557605
https://doi.org/10.1145/2557605
https://doi.org/10.1103/physrevb.90.054305
https://doi.org/10.1103/physrevb.90.054305
https://doi.org/10.1134/S0030400X15100069
https://doi.org/10.1145/2980179.2980221
https://doi.org/10.1145/3306346.3322950
https://doi.org/10.1016/j.optlaseng.2012.01.020
https://doi.org/10.1016/j.opelre.2017.03.004
https://doi.org/10.1016/j.opelre.2017.03.004
https://doi.org/10.1016/0168-9002(92)90074-e
https://doi.org/10.1364/JOSA.62.000502
https://doi.org/10.1364/JOSA.62.000502
https://doi.org/10.1117/12.44699
https://doi.org/10.1103/PhysRevE.74.061701
https://doi.org/10.1103/PhysRevE.74.061701
https://doi.org/10.1111/j.1467-8659.2010.01733.x
https://doi.org/10.1111/j.1467-8659.2010.01733.x


Accurate Rendering of Liquid-Crystals and Inhomogeneous Optically Anisotropic Media • 22:17

Yankai Cao, Huaizhe Yu, Nicholas L. Abbott, and Victor M. Zavala. 2018. Machine
Learning Algorithms for Liquid Crystal-Based Sensors. ACS Sensors 3, 11 (2018),
2237–2245. https://doi.org/10.1021/acssensors.8b00100 PMID: 30289249.

Charly Collin, Sumanta Pattanaik, Patrick LiKamWa, and Kadi Bouatouch. 2014. Com-
putation of Polarized Subsurface BRDF for Rendering. In Proceedings of Graphics
Interface 2014 (GI ’14). 201–208.

Tom Cuypers, Tom Haber, Philippe Bekaert, Se Baek Oh, and Ramesh Raskar. 2012.
Reflectance model for diffraction. ACM Transactions on Graphics 31, 5 (Aug 2012),
1–11. https://doi.org/10.1145/2231816.2231820

E. Ledezma-Sillas D. Tentori, C. Ayala-Díaz. 2008. Matrix model for a twisted medium:
liquid crystal cell. https://doi.org/10.1117/12.795282

P.G. de Gennes and J. Prost. 1993. The Physics of Liquid Crystals. Clarendon Press.
https://books.google.com/books?id=0Nw-dzWz5agC

Arnout De Meyere. 1994. Light propagation and color variations in liquid-crystal dis-
plays. Journal of the Optical Society of America A 11, 2 (Feb 1994), 731. https:
//doi.org/10.1364/josaa.11.000731

Hideo Doi, Kazuaki Z. Takahashi, Kenji Tagashira, Jun-ichi Fukuda, and Takeshi Aoy-
agi. 2019. Machine learning-aided analysis for complex local structure of liquid
crystal polymers. Scientific Reports 9, 1 (Nov 2019). https://doi.org/10.1038/s41598-
019-51238-1

Zhao Dong, BruceWalter, SteveMarschner, and Donald P. Greenberg. 2015. Predicting
Appearance from Measured Microgeometry of Metal Surfaces. ACM Trans. Graph.
35, 1 (2015), 9:1–9:13.

K. Eidner, G. Mayer, M. Schmidt, and H. Schmiedel. 1989. Optics in Stratified Media—
The Use of Optical Eigenmodes of Uniaxial Crystals in the 4 × 4-Matrix Formalism.
Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 172, 1 (1989),
191–200. https://doi.org/10.1080/00268948908042161

M. Gantri. 2014. Solution of Radiative Transfer Equation with a Continuous and Sto-
chastic Varying Refractive Index by Legendre Transform Method. Computational
and Mathematical Methods in Medicine 2014 (2014), 1–7. https://doi.org/10.1155/
2014/814929

S. Gauza, C. H. Wen, B. Tan, Y. H. Wu, Y. H. Lin, and S. T. Wu. 2004. 46.1: UV-Stable
High-Birefringence Low-Viscosity Isothiocyaniane Liquid Crystals and Applica-
tion to 50-μsec Response Switching Device. SID Symposium Digest of Technical
Papers 35, 1 (2004), 1304. https://doi.org/10.1889/1.1825755

Yong Geng, JungHyun Noh, and Jan P. F. Lagerwall. 2016. Transmission polarized op-
tical microscopy of short-pitch cholesteric liquid crystal shells. In Emerging Liquid
Crystal Technologies XI, Liang-Chy Chien, Dick J. Broer, Hirotsugu Kikuchi, and
Nelson V.Editors Tabiryan (Eds.). SPIE. https://doi.org/10.1117/12.2216132

Thomas A. Germer, Katelynn A. Sharma, Thomas G. Brown, and James B. Oliver.
2017. Polarized optical scattering by inhomogeneities and surface roughness in
an anisotropic thin film. J. Opt. Soc. Am. A 34, 11 (Nov 2017), 1974–1984. https:
//doi.org/10.1364/JOSAA.34.001974

A. Guerreiro, J. C. Costa, M. Gomes, R. A. Alves, and N. A. Silva. 2017. Physical ray-
tracing method for anisotropic optical media in GPGPU. https://doi.org/10.1117/
12.2272144

Yubing Guo, Miao Jiang, Chenhui Peng, Kai Sun, Oleg Yaroshchuk, Oleg Lavrentovich,
andQi-HuoWei. 2016. High-Resolution andHigh-Throughput Plasmonic Photopat-
terning of Complex Molecular Orientations in Liquid Crystals. Advanced Materials
28, 12 (Jan 2016), 2353–2358. https://doi.org/10.1002/adma.201506002

Diego Gutierrez, Adolfo Munoz, Oscar Anson, and Francisco J. Seron. 2008. Non-linear
volume photonmapping. InACM SIGGRAPHASIA 2008 courses on - SIGGRAPHAsia
’08. ACM Press. https://doi.org/10.1145/1508044.1508109

Ji-Huan He. 1999. Homotopy perturbation technique. Computer Methods in Applied
Mechanics and Engineering 178, 3–4 (Aug 1999), 257–262. https://doi.org/10.1016/
s0045-7825(99)00018-3

M. Humar, M. Ravnik, S. Pajk, and I. Muševič. 2009. Electrically tunable liquid crystal
optical microresonators. Nature Photonics 3, 10 (Sep 2009), 595–600. https://doi.
org/10.1038/nphoton.2009.170

Wenzel Jakob, Eugene D’Eon, Otto Jakob, and Steve Marschner. 2014. A Comprehen-
sive Framework for Rendering Layered Materials. ACM Transactions on Graphics
(Proceedings of SIGGRAPH) 33, 4 (July 2014), 118:1–118:14. https://doi.org/10.1145/
2601097.2601139

Adrian Jarabo and Victor Arellano. 2018. Bidirectional Rendering of Vector Light
Transport. Computer Graphics Forum 37, 6 (2018), 96–105. https://doi.org/10.1111/
cgf.13314

Masaki Kanke and Kazuo Sasaki. 2013. Equilibrium Configuration in a Nematic Liquid
Crystal Droplet with Homeotropic Anchoring of Finite Strength. Journal of the
Physical Society of Japan 82, 9 (Sep 2013), 94605. https://doi.org/10.7566/jpsj.82.
094605

Charalambos C. Katsidis and Dimitrios I. Siapkas. 2002. General transfer-matrix
method for optical multilayer systems with coherent, partially coherent, and in-
coherent interference. Appl. Opt. 41, 19 (Jul 2002), 3978–3987. https://doi.org/10.
1364/AO.41.003978

S. Kaur, Y.-J. Kim, H. Milton, D. Mistry, I. M. Syed, J. Bailey, K. S. Novoselov, J. C. Jones,
P. B. Morgan, J. Clamp, and et al. 2016. Graphene electrodes for adaptive liquid

crystal contact lenses. Optics Express 24, 8 (Apr 2016), 8782. https://doi.org/10.
1364/oe.24.008782

Yasaman Kiasat, Zsolt Szabo, Xudong Chen, and Erping Li. 2014. Light interaction
with multilayer arbitrary anisotropic structure: an explicit analytical solution and
application for subwavelength imaging. J. Opt. Soc. Am. B 31, 3 (Mar 2014), 648–655.
https://doi.org/10.1364/JOSAB.31.000648

Mingyun Kim, Kyun Joo Park, Seunghwan Seok, Jong Min Ok, Hee-Tae Jung, Jae-
hoon Choe, and Do Hyun Kim. 2015. Fabrication of Microcapsules for Dye-Doped
Polymer-Dispersed Liquid Crystal-Based Smart Windows. ACS Applied Materials
& Interfaces 7, 32 (Aug 2015), 17904–17909. https://doi.org/10.1021/acsami.5b04496

V. R. Kocharyan, A. S. Gogolev, A. E. Movsisyan, A. H. Beybutyan, S. G. Khlopuzyan,
and L. R. Aloyan. 2015. X-ray diffraction method for determination of interplanar
spacing and temperature distribution in crystals under an external temperature
gradient. Journal of Applied Crystallography 48, 3 (May 2015), 853–856. https:
//doi.org/10.1107/s1600576715006913

I.S. Kolomiets. 2013. Studying anisotropic properties of longitudinal inhomogeneous
nondepolarizing media with elliptical phase anisotropy. Semiconductor Physics
Quantum Electronics and Optoelectronics 16, 4 (Dec 2013), 366–373. https://doi.
org/10.15407/spqeo16.04.366

Yu. A. Kravtsov, B. Bieg, and K. Yu. Bliokh. 2007. Stokes-vector evolution in a weakly
anisotropic inhomogeneous medium. Journal of the Optical Society of America A 24,
10 (Sep 2007), 3388. https://doi.org/10.1364/josaa.24.003388

Pedro Latorre, Francisco J. Seron, and Diego Gutierrez. 2012. Birefringence: calculation
of refracted ray paths in biaxial crystals. The Visual Computer 28, 4 (01 Apr 2012),
341–356. https://doi.org/10.1007/s00371-011-0619-2

Mon-Juan Lee, Chi-Hao Lin, and Wei Lee. 2015. Liquid-crystal-based biosensing be-
yond texture observations. In Liquid Crystals XIX, Iam ChoonEditor Khoo (Ed.).
SPIE. https://doi.org/10.1117/12.2187818

J. Lekner. 1991. Reflection and refraction by uniaxial crystals. Journal of Physics Con-
densed Matter 3 (Aug. 1991), 6121–6133. https://doi.org/10.1088/0953-8984/3/32/
017

Anat Levin, Daniel Glasner, Ying Xiong, Fredo Durand, Bill Freeman, Wojciech Ma-
tusik, and Todd Zickler. 2013. Fabricating BRDFs at High Spatial Resolution Using
Wave Optics. ACM Transaction of Graphics (2013).

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu. 2005. Refractive Indices of Liquid
Crystals for Display Applications. Journal of Display Technology 1, 1 (Sep 2005),
51–61. https://doi.org/10.1109/jdt.2005.853357

Teresa Lopez-Leon and Alberto Fernandez-Nieves. 2011. Drops and shells of liquid
crystal. Colloid and Polymer Science 289, 4 (Jan 2011), 345–359. https://doi.org/10.
1007/s00396-010-2367-7

Jens G. Magnus and Stefan Bruckner. 2018. Interactive Dynamic Volume Illumination
with Refraction and Caustics. IEEE Transactions on Visualization and Computer
Graphics 24, 1 (Jan 2018), 984–993. https://doi.org/10.1109/tvcg.2017.2744438

Wilhelm Magnus. 1954. On the exponential solution of differential equations for a
linear operator. Communications on Pure and Applied Mathematics 7, 4 (1954), 649–
673. https://doi.org/10.1002/cpa.3160070404

L. Mandel and E. Wolf. 1995. Optical Coherence andQuantum Optics. 1192 pages.
Heylal Mashaal, Alex Goldstein, Daniel Feuermann, and Jeffrey M. Gordon. 2012. First

direct measurement of the spatial coherence of sunlight. Opt. Lett. 37, 17 (Sep 2012),
3516–3518. https://doi.org/10.1364/OL.37.003516

Michal Mojzík, Tomáš Skřivan, Alexander Wilkie, and Jaroslav Křivánek. 2016. Bi-
Directional Polarised Light Transport. In Eurographics Symposium on Rendering -
Experimental Ideas & Implementations, Elmar Eisemann and Eugene Fiume (Eds.).
https://doi.org/10.2312/sre.20161215

Yohei Nishidate. 2013. Closed-form analytical solutions for ray tracing in optically
anisotropic inhomogeneous media. J. Opt. Soc. Am. A 30, 7 (Jul 2013), 1373–1379.
https://doi.org/10.1364/JOSAA.30.001373

Akifumi Ogiwara, Hiroshi Kakiuchida, Masato Tazawa, and Hiroshi Ono. 2007. Analy-
sis of Anisotropic Diffraction Gratings Using Holographic Polymer-Dispersed Liq-
uid Crystal. Japanese Journal of Applied Physics 46, 11 (Nov 2007), 7341–7346.
https://doi.org/10.1143/jjap.46.7341

J.K. Patel and C.B. Read. 1996. Handbook of the Normal Distribution, Second Edition.
Taylor & Francis. https://books.google.se/books?id=zoVLF0VF9UYC

Vincent Pegoraro and Steven G. Parker. 2006. Physically-based Realistic Fire Ren-
dering. In Proceedings of the Second Eurographics Conference on Natural Phenom-
ena (NPH’06). Eurographics Association, Goslar Germany, Germany, 51–59. https:
//doi.org/10.2312/NPH/NPH06/051-059

Kamil Postava, Tomuo Yamaguchi, and Roman Kantor. 2002. Matrix description of
coherent and incoherent light reflection and transmission by anisotropic multilayer
structures. Appl. Opt. 41, 13 (May 2002), 2521–2531. https://doi.org/10.1364/AO.41.
002521

Scott A. Prahl. 1995. The Adding-Doubling Method. Springer US, Boston, MA, 101–129.
https://doi.org/10.1007/978-1-4757-6092-7_5

O. O. Prishchepa, V. Ya. Zyryanov, A. P. Gardymova, and V. F. Shabanov. 2008. Optical
Textures and Orientational Structures of Nematic and Cholesteric Droplets with
Heterogeneous Boundary Conditions. Molecular Crystals and Liquid Crystals 489,

ACM Trans. Graph., Vol. 39, No. 3, Article 22. Publication date: April 2020.

https://doi.org/10.1021/acssensors.8b00100
https://doi.org/10.1145/2231816.2231820
https://doi.org/10.1117/12.795282
https://books.google.com/books?id=0Nw-dzWz5agC
https://doi.org/10.1364/josaa.11.000731
https://doi.org/10.1364/josaa.11.000731
https://doi.org/10.1038/s41598-019-51238-1
https://doi.org/10.1038/s41598-019-51238-1
https://doi.org/10.1080/00268948908042161
https://doi.org/10.1155/2014/814929
https://doi.org/10.1155/2014/814929
https://doi.org/10.1889/1.1825755
https://doi.org/10.1117/12.2216132
https://doi.org/10.1364/JOSAA.34.001974
https://doi.org/10.1364/JOSAA.34.001974
https://doi.org/10.1117/12.2272144
https://doi.org/10.1117/12.2272144
https://doi.org/10.1002/adma.201506002
https://doi.org/10.1145/1508044.1508109
https://doi.org/10.1016/s0045-7825(99)00018-3
https://doi.org/10.1016/s0045-7825(99)00018-3
https://doi.org/10.1038/nphoton.2009.170
https://doi.org/10.1038/nphoton.2009.170
https://doi.org/10.1145/2601097.2601139
https://doi.org/10.1145/2601097.2601139
https://doi.org/10.1111/cgf.13314
https://doi.org/10.1111/cgf.13314
https://doi.org/10.7566/jpsj.82.094605
https://doi.org/10.7566/jpsj.82.094605
https://doi.org/10.1364/AO.41.003978
https://doi.org/10.1364/AO.41.003978
https://doi.org/10.1364/oe.24.008782
https://doi.org/10.1364/oe.24.008782
https://doi.org/10.1364/JOSAB.31.000648
https://doi.org/10.1021/acsami.5b04496
https://doi.org/10.1107/s1600576715006913
https://doi.org/10.1107/s1600576715006913
https://doi.org/10.15407/spqeo16.04.366
https://doi.org/10.15407/spqeo16.04.366
https://doi.org/10.1364/josaa.24.003388
https://doi.org/10.1007/s00371-011-0619-2
https://doi.org/10.1117/12.2187818
https://doi.org/10.1088/0953-8984/3/32/017
https://doi.org/10.1088/0953-8984/3/32/017
https://doi.org/10.1109/jdt.2005.853357
https://doi.org/10.1007/s00396-010-2367-7
https://doi.org/10.1007/s00396-010-2367-7
https://doi.org/10.1109/tvcg.2017.2744438
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1364/OL.37.003516
https://doi.org/10.2312/sre.20161215
https://doi.org/10.1364/JOSAA.30.001373
https://doi.org/10.1143/jjap.46.7341
https://books.google.se/books?id=zoVLF0VF9UYC
https://doi.org/10.2312/NPH/NPH06/051-059
https://doi.org/10.2312/NPH/NPH06/051-059
https://doi.org/10.1364/AO.41.002521
https://doi.org/10.1364/AO.41.002521
https://doi.org/10.1007/978-1-4757-6092-7_5


22:18 • Shlomi Steinberg

1 (Sep 2008), 84/[410]–93/[419]. https://doi.org/10.1080/15421400802219817
I. Ricardez-Vargas and K. Volke-Sepúlveda. 2010. Experimental generation and dy-

namical reconfiguration of different circular optical lattices for applications in
atom trapping. Journal of the Optical Society of America B 27, 5 (Apr 2010), 948.
https://doi.org/10.1364/josab.27.000948

Michael Shribak. 2011. Complete polarization state generator with one variable re-
tarder and its application for fast and sensitive measuring of two-dimensional
birefringence distribution. J. Opt. Soc. Am. A 28, 3 (Mar 2011), 410–419. https:
//doi.org/10.1364/JOSAA.28.000410

Michael Shribak and Rudolf Oldenbourg. 2003. Techniques for fast and sensitive mea-
surements of two-dimensional birefringence distributions. Appl. Opt. 42, 16 (Jun
2003), 3009–3017. https://doi.org/10.1364/AO.42.003009

G. V. Simonenko. 2010. Modelling the optical responses of electrooptic effects of liquid-
crystal cells. Journal of Optical Technology 77, 2 (Feb 2010), 93. https://doi.org/10.
1364/jot.77.000093

Maarten Sluijter, Dick K. de Boer, and H. Paul Urbach. 2009. Ray-optics analysis of
inhomogeneous biaxially anisotropic media. J. Opt. Soc. Am. A 26, 2 (Feb 2009),
317–329. https://doi.org/10.1364/JOSAA.26.000317

Maarten Sluijter, Dick K. G. de Boer, and Joseph J. M. Braat. 2008. General polarized
ray-tracing method for inhomogeneous uniaxially anisotropic media. J. Opt. Soc.
Am. A 25, 6 (Jun 2008), 1260–1273. https://doi.org/10.1364/JOSAA.25.001260

Alexander Smith, Nicholas L. Abbott, and Victor M. Zavala. 2020. Convolutional Net-
work Analysis of Optical Micrographs. (1 2020). https://doi.org/10.26434/chemrxiv.
11688924.v1

S. Stallinga. 1999. Berreman 4X4 matrix method for reflective liquid crystal displays.
Journal of Applied Physics 85, 6 (1999), 3023–3031. https://doi.org/10.1063/1.369638

Jos Stam and Eric Languénou. 1996. Ray Tracing in Non-Constant Media. In Rendering
Techniques ’96, Xavier Pueyo and Peter Schröder (Eds.). Springer Vienna, Vienna,
225–234.

Holger Stark. 2001. Physics of colloidal dispersions in nematic liquid crystals. Physics
Reports 351, 6 (Oct 2001), 387–474. https://doi.org/10.1016/s0370-1573(00)00144-7

S. Steinberg. 2019. Analytic Spectral Integration of Birefringence-Induced Iridescence.
Computer Graphics Forum 38, 4 (jul 2019), 97–110. https://doi.org/10.1111/cgf.13774

Kevin G. Suffern and Phillip H. Getto. 1991. Ray Tracing Gradient Index Lenses. In Sci-
entific Visualization of Physical Phenomena, Nicholas M. Patrikalakis (Ed.). Springer
Japan, Tokyo, 317–331.

Xin Sun, Kun Zhou, Eric Stollnitz, Jiaoying Shi, and Baining Guo. 2008. Interactive
relighting of dynamic refractive objects. In ACM SIGGRAPH 2008 papers on - SIG-
GRAPH ’08. ACM Press. https://doi.org/10.1145/1399504.1360634

David C. Tannenbaum, Peter Tannenbaum, and Michael J. Wozny. 1994. Polarization
and Birefringency Considerations in Rendering. In Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’94). 221–
222. https://doi.org/10.1145/192161.192204

Volodymyr Tkachenko, Giancarlo Abbate, Antigone Marino, Francesco Vita, Michele
Giocondo, Alfredo Mazzulla, Federica Ciuchi, and Luca De Stefano. 2006. Nematic
Liquid Crystal Optical Dispersion in the Visible-Near Infrared Range. Molecular
Crystals and Liquid Crystals 454, 1 (Sep 2006), 263/[665]–271/[673]. https://doi.
org/10.1080/15421400600655816

Antoine Toisoul and Abhijeet Ghosh. 2017. Practical Acquisition and Rendering of
Diffraction Effects in Surface Reflectance. ACM Transactions on Graphics 36, 5 (Jul
2017), 1–16. https://doi.org/10.1145/3012001

Michael Walters, Qianshi Wei, and Jeff Z. Y. Chen. 2019. Machine learning topological
defects of confined liquid crystals in two dimensions. Phys. Rev. E 99 (Jun 2019),
062701. Issue 6. https://doi.org/10.1103/PhysRevE.99.062701

J. Wei and E. Norman. 1964. On Global Representations of the Solutions of Linear
Differential Equations as a Product of Exponentials. Proc. Amer. Math. Soc. 15, 2
(1964), 327–334.

Andrea Weidlich and Alexander Wilkie. 2008. Realistic Rendering of Birefringency
in Uniaxial Crystals. ACM Trans. Graph. 27, 1, Article 6 (March 2008), 12 pages.
https://doi.org/10.1145/1330511.1330517

Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias Hullin. 2017. Scratch
Iridescence: Wave-Optical Rendering of Diffractive Surface Structure. Transactions
on Graphics (Proceedings of SIGGRAPH Asia) 36, 6 (Nov. 2017). https://doi.org/10.
1145/3130800.3130840

R. M. Wilcox. 1967. Exponential Operators and Parameter Differentiation inQuantum
Physics. J. Math. Phys. 8, 4 (1967), 962–982. https://doi.org/10.1063/1.1705306

Yue Wu and Ji-Huan He. 2018. Homotopy perturbation method for nonlinear oscil-
lators with coordinate-dependent mass. Results in Physics 10 (Sep 2018), 270–271.
https://doi.org/10.1016/j.rinp.2018.06.015

YunlongWu, Jinsong Nie, and Li Shao. 2016. Method to measure the phase modulation
characteristics of a liquid crystal spatial light modulator. Applied Optics 55, 31 (Oct
2016), 8676. https://doi.org/10.1364/ao.55.008676

Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi.
2018. Rendering Specular Microgeometry with Wave Optics. ACM Trans. Graph.
37, 4, Article 75 (July 2018), 10 pages. https://doi.org/10.1145/3197517.3201351

Amnon Yariv and Pochi Yeh. 2003. Optical waves in crystals : propagation and control
of laser radiation. Hoboken, N.J.: John Wiley and Sons.

Pochi Yeh. 1982. Extended Jones matrix method. J. Opt. Soc. Am. 72, 4 (Apr 1982),
507–513. https://doi.org/10.1364/JOSA.72.000507

S.-H. Youn, B.-J. Mun, J. H. Lee, B. K. Kim, H. C. Choi, S. H. Lee, B. Kang, and G.-D.
Lee. 2014. Multidimensional calculation of ray path in a twisted nematic liquid
crystal cell. Journal of Modern Optics 61 (Feb. 2014), 257–262. https://doi.org/10.
1080/09500340.2013.879939

Dmitry Zhdanov, Sergey Ershov, Leo Shapiro, Vadim Sokolov, Alexey Voloboy,
Vladimir Galaktionov, and Igor Potemin. 2019. Realistic rendering of scenes with
anisotropic media. Optical Engineering 58, 8 (2019), 1 – 11 – 11. https://doi.org/10.
1117/1.OE.58.8.082413

Simon Čopar, Tine Porenta, and Slobodan Žumer. 2013. Visualisation methods for
complex nematic fields. Liquid Crystals 40, 12 (2013), 1759–1768. https://doi.org/
10.1080/02678292.2013.853109 arXiv:https://doi.org/10.1080/02678292.2013.853109

A REPRESENTATION OF THE SOLUTION AS A
PRODUCT OF MATRIX EXPONENTIALS

In this appendix we derive the representation of the solution 𝑒Ω
(equation 29), as well as the scalar ODEs that accompany it (equa-
tions 25-28).

We start with a few preliminaries. Let A,B ∈ 𝔤𝔩𝑛 , where 𝔤𝔩𝑛 is
the general Lie algebra consisting of 𝑛 × 𝑛 real matrices, then the
Lie bracket is the matrix commutator defined as [A,B] = AB−BA.
For convenience we also define the adjoint linear operator adA B =
[A,B], then ad2A B = [A, [A,B]] and so on. The matrix exponen-
tial maps 𝔤𝔩𝑛 to its Lie group 𝐺𝐿𝑛 (R) via the series expansion

𝑒A = I +A + A2

2!
+ A3

3!
+ · · · =

∞∑
𝑚=0

A𝑚

𝑚!
(39)

and note that the identity 𝑒A+B = 𝑒A𝑒B holds only when A, B
commute (that is [A,B] = 0). We also define the operator 𝑒adA

which when acting upon a Lie algebra element can be rewritten as
a series using the Baker-Hausdorff formula:

𝑒adAB = 𝑒AB𝑒−A = B + adA B + 1

2!
ad2A B + · · · (40)

The Magnus expansion [Magnus 1954] can be considered as the
continuous analog of the Baker-Campbell-Hausdorff formula (given
an equation 𝑒X = 𝑒A+B the BCH formula provides an infinite se-
ries expansion to the matrix X that solves the equation for small
enough A and B) and provides a local representation of the solu-
tion to a first-order ordinary differential equation that involves a
linear operator. Specifically, the solution to the differential equa-
tion 19 can be represented by a matrix exponent 𝑒Ω of an infinite
sum Ω (𝑦) = ∑∞

𝑚=1 Δ𝑚 (𝑦) in some neighbourhood of 𝑦 = 0 such
that𝜓 (𝑦) = 𝑒Ω (𝑦)𝜓 (0) [Wilcox 1967]. The first couple of terms of
Ω are

Δ1 (𝑦) =
∫ 𝑦

0
A (𝜉) d𝜉

Δ2 (𝑦) =
1

2

∫ 𝑦

0

∫ 𝜉

0
[A (𝜉) ,A (ℎ)] dℎ d𝜉 (41)

subsequent terms are computed recursively and involve additional
nested integrals of nested commutators. If A were to commute
with itself all the commutators would vanish and 𝑒Ω would be re-
duced to the well-known classical solution to the matrix-valued dif-
ferential equation, viz. 𝑒Ω = exp

(∫ 𝑦
0

A (𝜉) d𝜉
)
. What follows is a

direct result of the Magnus expansion:
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Lemma A.1. When the linear operator is expressed as a linear com-
bination of Lie algebra elements, viz. A (𝑦) = ∑𝑚

𝑗=1 𝑎 𝑗 (𝑦)X𝑗 (with
the X𝑗 being independent of 𝑦), the solution can also be written as a
linear combination of the same elements due to the closure property of
Lie algebras.That is, if𝔤 is the Lie algebra generated by {X1, · · · ,X𝑚},
then ad𝑚A(𝑦1) A (𝑦2) ∈ 𝔤 for any𝑚 ≥ 0 and 𝑦1, 𝑦2 ∈ [0,−𝜏], there-
fore Δ 𝑗 ∈ 𝔤 and as a consequence

𝑒Ω (𝑦) =
𝑚∏
𝑗=1

𝑒 𝑓𝑗 (𝑦)X𝑗

Proof given by Wilcox [1967]. □

Under the conditions of Lemma A.1 the following Lemma was
proven by Wei and Norman [1964]:

Lemma A.2. GivenA and 𝔤 as above, it holds that 𝑒Ω can be repre-
sented as a product ofmatrix exponentials, viz. 𝑒Ω (𝑦) =

∏𝑚
𝑗=1 𝑒

𝑓𝑗 (𝑦)X𝑗 .
Furthermore the scalar functions 𝑓𝑗 (𝑦) depend only on the scalar func-
tions 𝑎 𝑗 (𝑦) as well as the Lie algebra 𝔤 via the following relation

𝑚∑
𝑗=1

𝑎 𝑗 (𝑦)X𝑗 =
𝑚∑
𝑗=1

d𝑓𝑗 (𝑦)
d𝑦

[ 𝑗−1∏
𝑙=1

𝑒 𝑓𝑙 (𝑦) adX𝑙

]
X𝑗

LemmaA.2 produces a system of ODEs, a system that can always
be solved numerically by quadrature. We are interested, however,
in an analytic solution or approximation to 𝑒Ω that is adequate for
use in the context of computer rendering. To that end, the elements
X𝑗 are selected such that the system simplifies into linear and qua-
dratic first-order ODEs only:

X1 =

[
0 1
0 0

]
X2 =

[
0 0
1 0

]
X3 =

[
1 0
0 −1

]
X4 = I (42)

and the Lie multiplication table that emerges for X1,2,3 is then

[X1,X2] = X3 [X1,X3] = −2X1 [X2,X3] = 2X2 (43)

We rewrite A (𝑦) = 𝑎 (𝑦) I + B (𝑦), with B (𝑦) =
∑3
𝑗=1 𝑏 𝑗 (𝑦)X𝑗 ,

such that the functions 𝑎 (𝑦), 𝑏1,2,3 (𝑦) satisfy equation 20. The so-
lution can then be represented via the following corollary:

CoRollaRy A.2.1. GivenX1,X2,X3 andA as defined above the
representation of the solution 𝑒Ω takes the form

𝑒Ω = 𝑒 𝑓 (𝑦)I
3∏
𝑗=1

𝑒𝑔𝑗 (𝑦)X𝑗

with 𝑓 (𝑦) =
∫ 𝑦
0
𝑎 (𝜉) d𝜉 , and 𝑢 (𝑦) = ∏3

𝑗=1 𝑒
𝑔𝑗 (𝑦)X𝑗𝜓 (0) being the

solution to the differential equation d𝑢/d𝑦 = B𝑢 accompanied by the
boundary condition 𝑢 (0) = 𝜓 (0).

PRoof. By Lemma A.1 the solution can be represented as a prod-
uct of matrix exponentials. Then, it is easy to see that

d

d𝑦
(𝑒 𝑓 I𝑢) = ( d

d𝑦
𝑒 𝑓 I)𝑢 + 𝑒 𝑓 I d𝑢

d𝑦
= (𝑎I + B) 𝑒 𝑓 I𝑢

Therefore 𝑢 = 𝑒−𝑓 I𝜓 and indeed𝜓 = 𝑒 𝑓 I𝑢. □

Wewill now derive the differential equations system for the func-
tions 𝑔1,2,3 in the representation of the solution for 𝑢 = 𝑒−𝑓 I𝜓 . The
Lie algebra 𝔤 is then generated by {X1,X2,X3} and we proceed by
directly applying Lemma A.2:

𝑏1X1 + 𝑏2X2 + 𝑏3X3 =

=
d𝑔1
d𝑦

X1 +
d𝑔2
d𝑦

𝑒𝑔1 adX1X2 +
d𝑔3
d𝑦

𝑒𝑔1 adX1 𝑒𝑔2 adX2X3 =

=
d𝑔1
d𝑦

X1 +
d𝑔2
d𝑦

(
X2 + 𝑔1X3 − 𝑔21X1

)
+

+ d𝑔3
d𝑦

[
X3 − 2𝑔1X1 + 2𝑔2

(
X2 + 𝑔1X3 − 𝑔21X1

)]
(44)

where we applied the Baker-Hausdorff formula (eq. 40) using the
multiplication table 43. Equating the X𝑗 on each side results in the
system 

𝑏1
𝑏2
𝑏3

 = G
d

d𝑦


𝑔1
𝑔2
𝑔3

 =
=


1 −𝑔21 −2𝑔1 (1 + 𝑔1𝑔2)
0 1 2𝑔2
0 𝑔1 1 + 2𝑔1𝑔2


d

d𝑦


𝑔1
𝑔2
𝑔3

 (45)

which always has a unique solution as the determinant det (G) = 1
never vanishes. This gives rise to three ODEs:

d

d𝑦
𝑔1 = −𝑏2𝑔21 + 2𝑏3𝑔1 + 𝑏1 (46)

d

d𝑦
𝑔2 = 2 (𝑔1𝑏2 − 𝑏3) 𝑔2 + 𝑏2 (47)

d

d𝑦
𝑔3 = −𝑏2𝑔1 + 𝑏3 (48)

with initial conditions 𝑔1 (0) = 𝑔2 (0) = 𝑔3 (0) = 0. The first
non-linear ODE, for 𝑔1, is known as the Riccati equation [Ric 1972],
which reduces to a second-order linear ODE and could be solved an-
alytically if a particular solution was to be found, e.g., by an ansatz.
𝑔2 is a linear first-order ODE and its general solution takes the well-
known form

𝑔2 (𝑦) = 𝑒−𝜇 (𝑦)
∫ 𝑦

0
𝑒𝜇 (𝜉)𝑏2 (𝜉) d𝜉 (49)

𝜇 (𝑦) = −2
∫ 𝑦

0
[𝑔1 (𝜉) 𝑏2 (𝜉) − 𝑏3 (𝜉)] d𝜉

The ODE for 𝑔3 is separable therefore its solution is found simply
by integration.

Finally, using corollaryA.2.1 and observing thatX1,X2 are nilpo-
tent whileX3, I are diagonal, we can compute the matrix exponen-
tials and write the representation for the solution 𝑒Ω as

𝑒Ω = 𝑒 𝑓 I
3∏
𝑗=1

𝑒𝑔𝑗X𝑗 = 𝑒 𝑓 (I + 𝑔1X1) (I + 𝑔2X2)
[
𝑒𝑔3

𝑒−𝑔3

]
=

= 𝑒 𝑓
[
(1 + 𝑔1𝑔2) 𝑒𝑔3 𝑔1𝑒

−𝑔3

𝑔2𝑒
𝑔3 𝑒−𝑔3

]
(50)

where 𝑓 (𝑦) =
∫ 𝑦
0
𝑎 (𝜉) d𝜉 .

This completes the derivation of equations 25-29.
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Anote regarding convergence. Therepresentation provided by the
Magnus expansion is generally confined to a local neighbourhood.
However, as the determinant of G never vanishes and the func-
tions 𝑎, 𝑏1, 𝑏2, 𝑏3 are analytic the general solution to equation 19 is
provided by 50 and the representation is global [Wei and Norman
1964].

Basis choice. The choice of the basis X1, X2, X3 is motivated
by producing a tractable system 𝐺 (eq. 45). Note that the order of
the basis elements is also crucial (as can be seen from Lemma A.2).
Ideally the resulting system should posses the following character-
istics:

(1) Non-vanishing determinant det (G).
(2) The resulting ODEs (eq. 25-27) should not give rise to circular

inter-dependencies (in which case the system reduces back
to an operator-valued ODE).

(3) Finally, we would like the ODEs to have analytic solutions,
admit acceptable analytic approximations or bewell-behaved
enough for semi-analytic methods.

Our basis of choice was produced by a combination of trial-and-
error and analytic methods and it satisfies the first two require-
ments fully. The Riccati ODE for 𝑔1 does not admit a general so-
lution form, however, as will be seen in the next subsection, this is
a non-issue.

B ANALYTIC REPRESENTATIONS FOR 𝑓 AND 𝑔1,2,3
In this appendix we approximate the scalar functions 𝑓 , 𝑔1, 𝑔2 and
𝑔3 (equations 25-28) with analytic expressions to derive the final
closed-form equations 30-33.

Simplifications. Note that 𝑏1 and 𝑏2 are the cross-component (or-
dinary to extraordinary and vice versa) terms in the operator A
(equation 20) and by our assumption of slowly varying optical con-
stants we can deduce that |𝑏1 | , |𝑏2 | � 1. As 𝑔1 (0) = 0, and there-
fore

��� d
d𝑦𝑔1 (0)

��� � 1, there is a region around 𝑦 = 0where |𝑔1 | � 1

and in that region 𝑏2𝑔21 ≈ 0. The Riccati ODE for 𝑔1 then simplifies
to

d

d𝑦
𝑔1 = 2𝑏3𝑔1 + 𝑏1 (51)

and using similar arguments we can also simplify 𝑔2 equivalently:
d

d𝑦
𝑔2 = −2𝑏3𝑔2 + 𝑏2 (52)

Furthermore, observe that as Im {𝑏1} ≡ 0, by construction, it
holds that

∀𝑛 ∈ N→ Im{ d𝑛

d𝑦𝑛
𝑔1 (0)} = 0

therefore we can assume that Im {𝑔1} ≈ 0 in some neighbourhood
of 𝑦 = 0 and it follows that

Im

{
d

d𝑦
𝑔3

}
= −𝑏2 Im {𝑔1} + Im {𝑏3} ≈ Im {𝑏3} (53)

It then becomes worthwhile to rewrite the ODE for 𝑔3 entirely as:
d

d𝑦
𝑔3 = 𝑏3 (54)

The justification is that clearly |𝑏2𝑔1 | � 1 and therefore the errors
in the real part of 𝑔3 would be small, and because of the 𝑘 = 2𝜋

𝜆
(the wavenumber) factor in the imaginary parts of 𝑏1,2,3 (see eq.
20), which is very large for wavelengths in the visible spectrum, the
solution is significantly more sensitive to errors in the imaginary
parts than the real parts.

Note that the simplified ODEs are now completely independent
from each other. When deriving analytic expressions for the solu-
tion 𝑒Ω , this fact can allow us to approximate different elements
of the solution with varying precision. For example, as discussed
in section 4, 𝑓 and 𝑔3, especially their imaginary parts, have spe-
cial meaning and carry crucial information. As 𝑓 and 𝑔3 have been
reduced to very simple separable ODEs, they could be computed
with greater accuracy, or even with a closed-form solution, while
the more complicated functions 𝑔1, 𝑔2 could be approximated in a
more lax manner (e.g., in order to reduce computation time). This
is generally not possible with methods that aim to approximate the
radiative transfer differential equation (eq. 19) directly.

The analytic forms of the solutions to the simplified ODEs are
then

𝑔1 (𝑦) = 𝑒𝜇 (𝑦)
∫ 𝑦

0
𝑒−𝜇 (𝜉)𝑏1 (𝜉) d𝜉 (55)

𝑔2 (𝑦) = 𝑒−𝜇 (𝑦)
∫ 𝑦

0
𝑒𝜇 (𝜉)𝑏2 (𝜉) d𝜉 (56)

𝑔3 (𝑦) =
∫ 𝑦

0
𝑏3 (𝜉) d𝜉 (57)

𝑓 (𝑦) =
∫ 𝑦

0
𝑎 (𝜉) d𝜉 (58)

with

𝜇 (𝑦) =
∫ 𝑦

0
2𝑏3 (𝜉) d𝜉 = 2𝑔3

See figure 12 for plots that compare numerically differentiated so-
lutions to the simplified ODEs against solutions to the full ODEs
(listed in equations 25-27) for a sample material. As expected, accu-
racy remains high in practice and for the rest of the paper we use
the simplified ODEs for 𝑔1,2,3, as defined in this subsection.

Analytic solutions for 𝑔1, 𝑔2 using Gaussian integrals. The inte-
grals in the solutions to the functions 𝑔1, 𝑔2 (equations 55-56) gen-
erally do not admit a closed-form solution. We approximate those
integrals via a sum of Gaussian integrals, i.e. integrals that are of
the form

∫ 𝑥
0
𝜙 (𝜉) 𝜉𝑛 d𝜉 , for some non-negative integer 𝑛 and with

the 𝜙 being the Gaussian distribution’s PDF (probability distribu-
tion function):

𝜙 (𝑥) = 1
√
2𝜋
𝑒−

𝑥2

2 (59)

When 𝑛 = 0 the Gaussian integral is the CDF (cumulative distribu-
tion function), which defines the standard error function, erf :∫ 𝑥

0
𝜙 (𝜉) d𝜉 =

√
𝜋

2
erf

(
𝑥
√
2

)
(60)
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Fig. 12. Comparison between solutions to the ODEs (eq. 25-27) and the simplified ones, obtained via a numerical solver. Blue and violet plots are the real and
imaginary parts, respectively, of the solution of the full ODEs (“ground-truth”), while the dashed black plots are the simplified versions. With the exception
of the real part of 𝑔3, which introduces small errors, the solutions to the simplified ODEs are identical for all practical intents and purposes. The numerical
solutions were generated using the evaluation slab (see section 5.3), with 𝐾 = 𝜋

8 and 𝜆 = 500nm.

For 𝑛 > 0 a recursive relation is trivially deduced via integration
by parts:∫ 𝑥

0
𝜙 (𝜉) 𝜉 d𝜉 = −𝜙 (𝑥) + 1

√
2𝜋

(61)∫ 𝑥

0
𝜙 (𝜉) 𝜉𝑛+2 d𝜉 = −𝑥𝑛+1𝜙 (𝑥) + (𝑛 + 1)

∫ 𝑥

0
𝜙 (𝜉) 𝜉𝑛 d𝜉 (62)

the recursive relation is then easily reduced to the closed-form equa-
tions 36 [Patel and Read 1996].

A closely related integral of the form
∫ 𝑥
0
𝜙 (𝛼 + 𝛽𝜉) 𝜉𝑛 d𝜉 , for

some constants 𝛼, 𝛽 ∈ C, reduces to a sum of Gaussian integrals
by a change of variable 𝑢 = 𝛼 + 𝛽𝜉 and an application of the Bino-
mial theorem:∫ 𝑥

0
𝜙 (𝛼 + 𝛽𝜉) 𝜉𝑛 d𝜉 =

1

𝛽𝑛+1

𝑛∑
𝑚=0

(
𝑛

𝑚

)
(−𝛼)𝑛−𝑚

[∫ 𝛼+𝛽𝑥

0
𝑢𝑚𝜙 (𝑢) d𝑢 −

∫ 𝛼

0
𝑢𝑚𝜙 (𝑢) d𝑢

]
(63)

Finally, we also define the Taylor expansion operator T𝑛 , which
expands an input 𝑓 (𝑥) into its 𝑛th-order Taylor series around the
point 𝑥 = 0:

T𝑛 {𝑓 } (𝑥) =
𝑛∑

𝑚=0

𝑥𝑚

𝑚!

d𝑚

d𝑥𝑚
𝑓 (0) (64)

We turn our attention back to the solution forms of 𝑔1 and 𝑔2.
Observe that the real part of 𝑔3, as well as 𝑏1 and 𝑏2, are small and
well-behaved, by the assumption of slowly varying optical proper-
ties. The imaginary part of 𝑔3, however, grows rapidly due to the
wavenumber factor, as discussed previously. Then, the integrand of

the solutions of 𝑔1, 𝑔2 can be rewritten by factoring out the highly
oscillatory term that arises due to Im {𝑔3}:

𝑔1 (𝑦) = 𝑒2𝑔3 (𝑦)
∫ 𝑦

0
𝑒−2𝑖 Im{𝑔3 (𝜉) } ·

(
𝑒−2Re{𝑔3 (𝜉) }𝑏1 (𝜉)

)
d𝜉

(65)

(with similar expression for 𝑔2). The right-hand side term in the in-
tegrand, 𝑒−2Re{𝑔3 }𝑏1, is then well behaved and can be represented
by its truncated Taylor series. As the imaginary part of 𝑔3 carries
the phase difference, it tends to be very smooth in practice and can
be approximated by a quadratic function reasonably well (see fig-
ure 13). Then, the solutions of 𝑔1, 𝑔2 are approximated via sums of
Gaussian integrals:

𝑔1 (𝑦) ≈
√
2𝜋 · 𝑒2𝑔3 (𝑦)−

𝛼2

2 ·

·
∫ 𝑦

0
𝜙 (𝑖𝛼 + 𝑖𝛽𝜉) T𝑛

{
𝑒−2Re{𝑔3 (𝜉) }𝑏1 (𝜉)

}
d𝜉 (66)

𝑔2 (𝑦) ≈
√
2𝜋 · 𝑒−2𝑔3 (𝑦)+

𝛼2

2 ·

·
∫ 𝑦

0
𝜙 (𝛼 + 𝛽𝜉) T𝑛

{
𝑒2Re{𝑔3 (𝜉) }𝑏2 (𝜉)

}
d𝜉 (67)

with the expansion order 𝑛 being chosen a priori. Given the series
coefficients 𝑐1, 𝑐2 ∈ R such that

T2 {Im {𝑔3 (𝑦)}} = 𝑐1𝑦 + 𝑐2𝑦2

the constants 𝛼 and 𝛽 that satisfy − (𝛼+𝛽𝑦)2
2 + 𝛼2

2 = 2𝑖
(
𝑐1𝑦 + 𝑐2𝑦2

)
are then

𝛼 =
(1 − 𝑖) 𝑐1√

2𝑐2
𝛽 = (1 − 𝑖)

√
2𝑐2 (68)
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Fig. 13. Approximate analytic closed-form expressions for the solutions to the differential equations for 𝑔1 and 𝑔2. We approximate the imaginary part of 𝑔3
by a quadratic function T2 {Im {𝑔3 }} (its second-order Taylor expansion) and use that function to rewrite the solutions to 𝑔1 and 𝑔2 (eq. 55-56) as a sum
of Gaussian integrals, in which case the solutions become analytical expressions that involve the complex error function. The resulting solutions are highly
precise as long as Im {𝑔3 } can be accurately represented by T2 {Im {𝑔3 }}. We quantify the error via the function 𝔢 = |Im {𝑔3 − T2 {𝑔3 }} | (plotted on the
left), which expresses the phase error in the complex exponent term of the integrands in equations 55, 56. When 𝔢 < 𝜋

2 , that is less than a quarter of a phase
cycle, the solutions are considered to be very accurate.

See figure 13 for plots of the resulting expressions for 𝑔1, 𝑔2 and
comparison against the numerically differentiated solutions of the
full ODEs.

Analytic expressions for 𝑓 and 𝑔3. Finding a closed-form solution
for the integrals for 𝑓 and 𝑔3 (eq. 57-58) might be infeasible in
practice—the operatorA is usually complicated and depends on the
user-supplied functions for the optical properties. We then choose
to also use the Taylor series of the functions 𝑎 and 𝑏3 for the com-
putations of 𝑓 and 𝑔3:

𝑔3 (𝑦) ≈
∫ 𝑦

0
T𝑛 {𝑏3 (𝜉)} d𝜉 𝑓 (𝑦) ≈

∫ 𝑦

0
T𝑛 {𝑎 (𝜉)} d𝜉 (69)

As𝑎 and𝑏3 tend to be very smooth, this does not affect the accuracy
of the method, which in practice remains limited by the approxima-
tions for 𝑔1, 𝑔2.

Alternative methods. It is worth noting that some semi-analytic
methods can at times produce better results compared to the tech-
nique described in this appendix. A method that is flexible enough
to deal with the highly oscillatory nature of 𝑔1 and 𝑔2 is the Ho-
motopy Perturbation Method (HPM) [He 1999; Wu and He 2018],
which is a powerful technique that has been successfully applied to
a variety of non-linear partial and ordinary differential equations.
Using HPM we have successfully obtained good approximations of
the functions 𝑔1 and 𝑔2 for some inputs, however choosing the ba-
sis functions of the solution space is non-trivial and the resulting
expressions tend to diverge rapidly on other inputs. In general, our
presented method produces better results, remains stable on a wide
range of inputs and does not require any manual configuration. All

of our presented results (see section 5) have been accomplished by
using the method as described.

C ELECTRIC FIELDS AND WAVEVECTORS
The required equations for light propagation in an uniaxial medium
are provided here. The full expressions for the Fresnel coefficients
for isotropic-to-anisotropic and anisotropic-to-isotropic interfaces,
as well as the general anisotropic-to-anisotropic interface, are too
long to list here and are provided in full in our supplemental mate-
rial (as MATLAB™ scripts). See [Steinberg 2019] for more details.

Given the incidence parameter 𝐾 = 𝜂 sin𝜃 (equation 8), the nor-
mal modes, i.e. the components of the wave’s direction of propaga-
tion normal to the interface (the 𝑦-component), become:

𝑞±𝑜 = ±
√
𝜖𝑜 − 𝐾2

𝑞±𝑒 =
±
√
𝜖𝑜

√
𝜖𝑒

(
𝛽2Δ𝜖 + 𝜖𝑜

)
+ 𝐾2

(
𝛼2Δ𝜖 − 𝜖𝑒

)
+ 𝛽𝛾𝐾Δ𝜖

𝜖𝑜 + 𝛽2Δ𝜖
(70)

where 𝜖𝑜,𝑒 are the ordinary and extraordinary permittivities, Δ𝜖 =
𝜖𝑒 − 𝜖𝑜 and ®a = [ 𝛼,𝛽,𝛾 ]𝑇 is the optic axis. The subscript denotes
an ordinary or extraordinary wave, while a positive sign in the su-
perscript denotes a ray propagating upwards and a minus sign in-
dicates downwards. The (unnormalized) wave’s direction of propa-
gation is then

®w±
𝑜,𝑒 =

[
0, 𝑞±𝑜,𝑒 ,−𝐾

]𝑇 (71)
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and the electric fields for the relevant waves are given by

®E±
𝑜 =

1

𝑁±
𝑜

(
®a × ®w±

𝑜
) ®E±

𝑒 =
1

𝑁±
𝑒

[
𝜖𝑜 ®a +

(
𝛾𝐾 − 𝛽𝑞±𝑒

)
®w±
𝑒

]
with 𝑁±

𝑜,𝑒 being the normalization factors. Finally, a wave’s phase
velocity direction and wavevector are simply [Born andWolf 1999]:

®s = ®w
| ®w|

®k = 𝑘®s (72)

where 𝑘 = 2𝜋
𝜆 is defined as the wavenumber.

As the incidence parameter𝐾 remains constant for all participat-
ing waves, the effective (real) refractive-index perceived by a wave
propagating in an anisotropic media is [Yariv and Yeh 2003]

𝜂ef =
𝐾

sin𝜙
=
√
𝑞2 + 𝐾2 (73)

with 𝜙 being the wave’s angle of refraction or reflection, and for an
extraordinary wave 𝜂ef varies between 𝜖𝑜 and 𝜖𝑒 .

D CONSTRAINTS ON THE INCIDENCE PARAMETER
The maximal incidence parameter, closely related to the critical an-
gle, is defined as

𝐾max
𝑒 = 𝜂𝑒

√
𝜂2𝑜 + 𝛽2Δ𝜖
𝜂2𝑒 − 𝛾2Δ𝜖

𝐾max
𝑜 = 𝜂𝑜 (74)

When 𝐾 ≥ 𝐾max total-reflection occurs: The refracted wave be-
comes evanescent and its associated Poynting vector—the direction
of the electromagnetic flux—is complex and parallel to the surface
interface. For our assumption of no total-reflection happening in
the slab to hold, we need to enforce that

𝐾 ≤ inf
{
𝐾max
𝑒 (𝑦) , 𝐾max

𝑜 (𝑦) | 𝑦 ∈ [0, − 𝜏]
}

(75)

In addition, we also would like to be able to enforce adherence
to a predefined coherence size by setting an upper bound on 𝑐 , the
length of the participating part of incident wavefront (see figure 2).
This is done by limiting the incidence angle of the incident plane-
wave. The maximal horizontal offset between participating waves
in the slab is

𝔥 =
∫ 𝑦

0

����� (®s𝑒 (𝜉))𝑧(®s𝑒 (𝜉))𝑦
−

(®s𝑜 (𝜉))𝑧
(®s𝑜 (𝜉))𝑦

�����d𝜉 (76)

and the projected size of this offset onto the incident wavefront is
𝑙 = 𝔥

cos𝜃 therefore the maximal incidence angle such that 𝑙 ≤ 𝑐 is

𝜃max = cos−1
(
𝔥
𝑐

)
(77)

Note that when 𝔥
𝑐 > 1 this constraint can not be satisfied for the

given slab.

E FRESNEL COEFFICIENTS FOR A THIN ANISOTROPIC
SLAB

By the boundary conditions implied by Maxwell’s equations, the
tangential components of the electric fields ®E are continuous across
an interface between two media [Born and Wolf 1999], allowing us
to deduce the Fresnel coefficients at that interface by taking into ac-
count all participating electric fields—the incident and the reflected

fields on one side, and the refracted field on the other side. This
gives rise to a system of 4 independent equations with 4 unknown,
and in our supplemental material we provide the solution for the
general case of an anisotropic-to-anisotropic interface.

However, as we have assumed negligible back-reflections, equat-
ing the reflected field to zero vastly simplifies the systems and we
are left with the following two systems: One for an incident ordi-
nary field; and one for an incident extraordinary field. For succinct-
ness we denote the short-hands ®x𝑜,𝑒 = ( ®E𝑜,𝑒 )𝑥 and ®z𝑜,𝑒 = ( ®E𝑜,𝑒 )𝑧
and the systems become:{

®x𝑜 (𝑦) = 𝑡𝑜𝑜 ®x𝑜 (𝑦 + Δ𝑦) + 𝑡𝑜𝑒 ®x𝑒 (𝑦 + Δ𝑦)
®z𝑜 (𝑦) = 𝑡𝑜𝑜®z𝑜 (𝑦 + Δ𝑦) + 𝑡𝑜𝑒®z𝑒 (𝑦 + Δ𝑦)

(78){
®x𝑒 (𝑦) = 𝑡𝑒𝑜 ®x𝑜 (𝑦 + Δ𝑦) + 𝑡𝑒𝑒 ®x𝑒 (𝑦 + Δ𝑦)
®z𝑒 (𝑦) = 𝑡𝑒𝑜®z𝑜 (𝑦 + Δ𝑦) + 𝑡𝑒𝑒®z𝑒 (𝑦 + Δ𝑦)

(79)

Solving those systems yields the transmission coefficients for our
slab of thickness Δ𝑦:

𝑡𝑜𝑜 =
®z𝑜 (𝑦) ®x𝑒 (𝑦 + Δ𝑦) − ®x𝑜 (𝑦) ®z𝑒 (𝑦 + Δ𝑦)

𝑁𝑡

𝑡𝑒𝑜 =
®z𝑒 (𝑦) ®x𝑒 (𝑦 + Δ𝑦) − ®x𝑒 (𝑦) ®z𝑒 (𝑦 + Δ𝑦)

𝑁𝑡

𝑡𝑜𝑒 =
®x𝑜 (𝑦) ®z𝑜 (𝑦 + Δ𝑦) − ®z𝑜 (𝑦) ®x𝑜 (𝑦 + Δ𝑦)

𝑁𝑡

𝑡𝑒𝑒 =
®x𝑒 (𝑦) ®z𝑜 (𝑦 + Δ𝑦) − ®z𝑒 (𝑦) ®x𝑜 (𝑦 + Δ𝑦)

𝑁𝑡
(80)

with
𝑁𝑡 = ®x𝑒 (𝑦 + Δ𝑦) ®z𝑜 (𝑦 + Δ𝑦) − ®x𝑜 (𝑦 + Δ𝑦) ®z𝑒 (𝑦 + Δ𝑦) (81)

Differentiating and taking the limit gives us the coefficients that
appear in operator A (eq. 20):

¤𝑡𝑜𝑜 =
1

𝑁𝑡

����
Δ𝑦=0

[
®z𝑒 (𝑦)

𝑑

𝑑𝑦
®x𝑜 (𝑦) − ®x𝑒 (𝑦)

𝑑

𝑑𝑦
®z𝑜 (𝑦)

]
¤𝑡𝑒𝑜 =

1

𝑁𝑡

����
Δ𝑦=0

[
®z𝑒 (𝑦)

𝑑

𝑑𝑦
®x𝑒 (𝑦) − ®x𝑒 (𝑦)

𝑑

𝑑𝑦
®z𝑒 (𝑦)

]
¤𝑡𝑜𝑒 =

1

𝑁𝑡

����
Δ𝑦=0

[
®x𝑜 (𝑦)

𝑑

𝑑𝑦
®z𝑜 (𝑦) − ®z𝑜 (𝑦)

𝑑

𝑑𝑦
®x𝑜 (𝑦)

]
¤𝑡𝑒𝑒 =

1

𝑁𝑡

����
Δ𝑦=0

[
®x𝑜 (𝑦)

𝑑

𝑑𝑦
®z𝑒 (𝑦) − ®z𝑜 (𝑦)

𝑑

𝑑𝑦
®x𝑒 (𝑦)

]
(82)
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