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Abstract. In scenario-based programming (SBP), the semantics, which enables
direct execution of these intuitive specifications, calls, among others, for syn-
chronizing concurrent scenarios prior to every event-selection decision. Doing
so even when the running scenarios are distributed across multiple physical sys-
tem components, may degrade system performance or robustness. In this paper
we describe a technique for automated distribution of an otherwise-centralized
specification, such that much of the synchronization requirement may be relaxed.
The technique calls for replicating the entire scenario-based executable specifi-
cation in each of the components, locally transforming it in a component-specific
manner, and reducing the synchronization requirements to very specific and well-
defined points during execution. Our evaluation of the technique shows promising
results. Given that relaxed synchronization can lead to what appears as different
runs in different components we discuss various criteria for what would constitute
acceptable differences, or divergence, in the parallel, distributed runs of almost-
identical copies of a single specification.

This paper incorporates and substantially extends the material of the paper pub-
lished in MODLESWARD’ 17 Distributing Scenario-Based Models: A Replicate-
and-Project Approach by the same authors[37].

Keywords: Software Engineering, Scenario-Based Modeling, Concurrency, Distributed
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1 Introduction

With modern reactive systems becoming both pervasive and highly complex, model-
ing them is becoming increasingly difficult. Modelers are forced to spend ever-larger
amounts of time and effort in order to reconcile two goals: (1) accurately describe com-
plex real-world systems and phenomena; and (2) do so using models that are simple,
comprehensible and intuitive to humans. These two goals are often conflicting: it is
difficult to describe the properties of such systems accurately, while at the same time
avoiding clutter, which makes it harder for humans to comprehend the resulting models.

Over the recent two decades, an approach termed Scenario-Based Modeling [6]
has emerged as an attempt to tackle these difficulties. The idea at its core is to model



systems in a way that is more intuitive and understandable to humans — by defining
scenarios that describe desirable or undesirable system behavior — and then to auto-
matically combine these scenarios in a way that produces a cohesive, global model.
Appropriate scenario-based approaches and tools have executable semantics, thus help-
ing to streamline the deployment of scenario-based models in the real world.

A scenario-based approach has been claimed to be more intuitive for humans to
understand (see, e.g., [11]). It allows the modeler to specify different but possibly in-
terrelated behavioral aspects as separate scenarios, reducing the inherent complexities
of the modeling process. However, by default and as explained later, a scenario-based
execution requires that all scenarios synchronize at every step, for the purpose of joint
event selection. When executing scenario-based specifications in a distributed architec-
ture, inter-scenario synchronization induces inter-component synchronization, which
may be undesirable in real-world systems, where communication is often costly, slow,
or unreliable. This difficulty constitutes a serious barrier when considering the use of
scenario-based modeling in a real-world distributed setting.

We seek to address this problem by proposing an automated technique for the trans-
formation of classical, highly synchronous scenario-based models into equivalent mod-
els with a greatly reduced level of synchronization. The basis of our approach is a rather
straightforward replicate-and-project (R&P) technique but with some subtle facets: we
replicate the full set of scenarios in all the distributed components, but project them in
a component-specific fashion, so that each component is made responsible only for the
actions that fall within its the local scope. Other, external actions, are assumed to be
performed by projections running on other components.

The scenarios then progress asynchronously, each selecting and triggering events
almost completely at its own pace. In order to make the replicated-and-projected sce-
narios behave the same as their non-distributed version, the distributed components
broadcast the local actions they perform to all other components. At times a situation
arises that forces some of the distributed components to mutually agree on the next
action to perform. This might happen either due to an exclusive choice among mul-
tiple enabled actions (i.e., events), or due to communication latency that might result
in different orders of broadcast actions as observed by different components. In these
cases, the affected scenarios indeed synchronize and reach a joint decision. An impor-
tant part of the work in this paper is dedicated to classifying these cases, understanding
when they arise, automatically detecting their occurrence in a program, and proposing
practical approaches for resolving them.

This process is handled automatically by our distribution algorithm and infrastruc-
ture, and, as we discuss and demonstrate later, it aims to generate a distributed model
that has as few synchronization points as possible.

The motivation behind the approach is to retain the modeler’s ability to use classical
scenario-based modeling, with its associated advantages, but to be able to then trans-
form the model into a version that is more amenable to distribution and deployment in
the real world. We prove that, under certain restrictions, our proposed transformation
preserves the behavior of the original model. This gives rise to a methodology for de-
veloping distributed scenario-based models, where one models a distributed system as



if it were centralized, and the model is then automatically adjusted to more accurately
simulate (or even run in) its final setting.

Automatic distribution of general models (i.e., not just scenario-based ones) or
synthesizing distributed models from specifications have been long-standing goals of
the software modeling and engineering community. Specifically, distributed synthesis
is known to be undecidable in general [36]. We contribute to this effort by studying
the problem in the context of scenario-based modeling, and leveraging some of the
paradigm’s properties of naturalness and relative simplicity. However, difficulties nev-
ertheless arise. We classify and describe them, and explain how they can still be ad-
dressed. Our experimental results indicate that the technique holds much potential for
becoming practical.

The rest of the paper is organized as follows. In Section 2 we provide a brief in-
troduction to the scenario-based approach. In Section 3 we present an example of a
distributed execution of a scenario-based specification for a light show to be performed
by light-equipped drones. This general description is used in the rationale and explana-
tion of various technical details throughout the paper. and a variant of the example is
used in the technical evaluation. In Section 4 we discuss variations, which may or may
not be allowed when transforming a fully synchronized execution into one where some
synchronization requirements are relaxed and certain actions may occur in a different
order. In Section 5 we describe the replicate-and-project technique for automatically
generating an executable distributed scenario-based model from a non-distributed one.
In this section we also prove the correctness of this transformation according to the
criteria set in Section 4. Section 6 describes how the approach can be applied when
different components in the model operate on different time scales. An example imple-
mentation and its evaluation appear in Section 7. In Section 8, we discuss related work
that has been carried out on automatic distribution, both in the general setting and in
the context of scenario-based modeling, Section 9 contains a discussion of our ongoing
and planned future work. We conclude in Section 10.

2 Background: Scenario-Based Specifications

Scenario-based specifications were introduced with the Live Sequence Charts (LSC)
formalism [6,25]. The approach, aimed at developing executable models of reactive
systems, shifts the focus from describing individual objects of the system into describ-
ing individual behaviors thereof. The basic building block in this approach is the sce-
nario: an artifact that describes a single behavior of the system, possibly involving
multiple different components thereof. Scenarios can describe desirable behaviors of
the system or undesirable ones, and their combinations. A set of user-defined scenarios
is then interwoven into one cohesive, potentially complex, system behavior.

Several facets of scenario-based modeling have been discussed and handled in dif-
ferent ways: scenarios can be represented graphically, as in the original LSC approach,
or textually, embedded within conventional programming languages [27, 13]; scenario-
based models can be executed by naive play-out [26], by smart play-out with looka-
head [23] or via controller synthesis (see, e.g., [29, 13]). The modeling process can be
augmented by a variety of automated verification, synthesis and repair tools [21, 16].



Research has shown that the basic principles at the core of the approach, shared by all
flavors, are naturalness and incrementality — in the sense that scenario-based modeling
is easy to learn and understand, and that it facilitates the incremental development of
complex models [11, 1]. These properties stem from the fact that modeling is done in
a way similar to the way humans explain complex phenomena to each other, detailing
the various steps and behaviors one at a time.

For the remainder of the paper, we focus on a particularly simple variant of scenario-
based modeling, called behavioral programming (BP) [27]. Despite its simplicity, BP
has been successfully used in developing medium scale projects [18,20], and is also
known to be particularly amenable to automatic analysis tools [22]. These properties
render BP a good candidate for demonstrating our approach. The rest of this section is
dedicated to demonstrating and formally defining BP.

In BP, a model is a set of scenarios, termed also behavior threads, or b-threads,
and an execution is a sequence of points, in which all the scenarios synchronize. At ev-
ery behavioral-synchronization point (abbreviated bSync) each scenario pauses and de-
clares events that it requests and events that it blocks. Intuitively, these two sets encode
desirable system behaviors (requested events) and undesirable ones (blocked events).
Scenarios can also declare events that they passively wait-for — stating that they wish
to be notified if and when these events occur. The scenarios do not communicate their
event declarations directly to each other; rather, all event declarations are collected by
an execution infrastructure common to all b-threads, termed the event selection mech-
anism (ESM), after its main function. Then, at every synchronization point during exe-
cution, the ESM selects (triggers) an event that is requested by some scenario and not
blocked by any scenario. The ESM notifies every scenario that requested or is waiting
for the triggered event about this selection. The b-threads can then update their internal
states, and proceed to their next synchronization point. When all affected b-threads syn-
chronize again (with each other and with the b-threads that were not affected) the ESM
repeats the event selection process. In BP, this notification of all affected b-threads is the
essence of event triggering. Any additional action that the designer wishes to associate
with an event (e.g., opening a water tap, turning car’s steering wheel, or flashing a light)
is to be carried out by the individual b-threads, using arbitrary method calls, as they tran-
sition from one synchronization point to another (by contrast, in the LSC language, the
triggering of an event also drives the invocation of a corresponding method provided by
the application). Fig. 1 (borrowed from [20]) demonstrates a simple behavioral model.

Formally, BP’s semantics are defined as follows. A scenario, also referred to as a
behavior thread (abbreviated b-thread), is defined as a tuple

BT = <Q7q0767R7B>

and with respect to a global set of events X. The components of the tuple are: a set
of states Q representing synchronization points; an initial state gy € Q; a deterministic
transition function & : Q x £ — Q that specifies how the thread changes states in response
to the triggering of events; and, two labeling functions, R : Q — P(X) and B: Q —
P(X), which specify the events that the thread requests (R) and blocks (B) in a given
synchronization point.
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Fig. 1. Incrementally modeling a controller for the water level in a tub. The tub has hot and cold water sources, and either
may be turned on in order to increase/reduce the water temperature. Each scenario is given as a transition system, where the
nodes represent synchronization points. The scenario ADDHOTWATER repeatedly waits for WATERLOW events and requests
three times the event ADDHOT. Scenario ADDCOLDWATER performs a similar action with the event ADDCOLD, capturing
a separate requirement, which was introduced when adding three water quantities for every sensor reading proved to be
insufficient. When a model with scenarios ADDHOTWATER and ADDCOLDWATER is executed, the three ADDHOT events
and three ADDCOLD events may be triggered in any order. When a new requirement is introduced, to the effect that the water
temperature be kept stable, the scenario STABILITY is added, enforcing the interleaving of ADDHOT and ADDCOLD events
by using event blocking. The execution trace of the resulting model is depicted in the event log.

A behavioral model M is defined as a collection of b-threads
M= {BT',... BT"},
all of them with respect to the same event set . Denoting the individual b-threads as
BT' = (0',4y,8' R ,B),

an execution of model M starts at the initial state <q(1), ...,qp)- Then, at every state
{q',...,q"), the model progresses to the next state (¢',...,7") by:

1. selecting an event e € X that is enabled, i.e. requested by at least one b-thread and
blocked by none:

n n
ec | UR@) )\ | UB'(4)

i=1 i=1

2. triggering event e and advancing the individual b-threads according to their transi-
tion systems:
Vi, qi :5i<qi?e)

For reactive systems, executions are usually considered to be infinite, although BP can

also be used to model systems with finite executions.

The BP definitions above are generic, making it easier to reason about behavioral
models. However, for practical purposes, the BP modeling principles have been inte-
grated into a variety of high-level languages such as Java, C++, Erlang and Javascript
(see the BP website at http://www.b-prog.org/). These frameworks allow engineers
to integrate reactive scenarios into their favorite programming or modeling environ-
ments. Further, the same principles that underly BP play a significant role in several
popular modeling frameworks, such as publish-subscribe architectures [8] and supervi-
sory control [35].

We conclude the section by defining the global state (the cuf) of a behavioral model
that is being executed:



Definition 1. Given a behavioral model M = {BT',...,BT"}, the program cut r €
Q! x ---x Q" is defined to be the current model state: r = (q',....q") where q' is the
current state of b-thread BT".

3 A Running Example

In many complex multi-participant operations, the participants, be they mechanical en-
tities or people, have to carry out actions in turns, one participant after the other. A
typical example is the all-way-stop traffic intersection (a.k.a. four-way stop). When
there are queues in each of the intersecting roads, the cars cross the intersection one at
a time, in a round-robin fashion, each coming from the front of the next queue. Another
example is an audience in a packed stadium ‘doing the wave’, where groups of people
stand up briefly and then sit down, in sequential order. These behaviors are very easily
described using scenario-based specifications, where the most basic behavior can be de-
scribed with a single scenario showing all the relevant entities performing their required
actions in turn. (Of course, there are also other kinds of scenarios; e.g., for passing a
all-way-stop intersection when you are the only car, or for the starting or the ending of
a stadium wave by an audience.)

The example that we will use both to illustrate our general considerations and as
the subject of our detailed analysis, is a simple drone-based light show (see elab-
orate shows by Disney in www.youtube.com/watch?v=gYr-P09meHY, and by Intel in
www . youtube . com/watch?v=teQwViKkMnxw). In our case, a set of drones form a circle and
flash their respective lights in successive turns, creating the appearance of a point of
light moving in a circle. More details are provided in Section 7. The basic, single-cycle
example is then expanded into repeating the cycle, stopping the cycle and then restart-
ing it with a different, arbitrarily-selected drone, and having multiple concurrent cycles
where each drone is equipped with multiple lights, perhaps of different colors.

In considering this example one may also think of analogies to human behavior:
replacing the programmer or designer with a show director, the drones with people,
perhaps children, who play roles in the show, and the computerized scenarios or pro-
grams (as well as the underlying SBP infrastructure), with the instructions given by the
director to the participants about what they should do, and when. The autonomous start-
ing of a new cycle at arbitrarily-selected drones may also be considered as reacting to
an uncontrolled environment event, e.g., when the show-director decides on their own
and unpredictably, at run time, which drone will be the first in the next cycle, and then
signals it to do so.

4 Distributing a Centralized SBP Execution: Success Criteria

4.1 Success Criteria

In order to assess the properties of a distributed execution of a specification that was
originally written with centralized-execution semantics assumptions, we first discuss
(a) formalization assumptions, namely: which physical properties of the distributed en-
vironment will be reflected in the formal solution and which will be abstracted away,



and (b) criteria for what constitutes a correct, desirable, or perhaps just acceptable, dis-
tributed execution.

In a centralized system the concept of a run is well defined and intuitive as the se-
quence of system states and generated events. In a distributed environment, especially
one that includes replication, this very definition is no longer without question. E.g., is
the distributed run the collection of local runs as executed and observed in each compo-
nent? Or perhaps it is a sequence of only the triggered events, without state transitions,
ordered according to the occurrence of events in the real world, e.g., according to a
time order as defined by fully synchronized component-specific clocks? Or should yet
another definition be applied?

Once defined, what would be the desired properties of such a distributed run? Clearly,
our goal is that it be materially different from a run where all distributed components
fully synchronize before every event, and that some independent local progress will be
allowed in each component. So the question we are facing is this: how much should the
execution of the various components be allowed to vary from each other?

In subsequent sections we offer a particular set of principles for the sought-for solu-
tion, and a distribution mechanism that satisfies them. But beforehand we first discuss
a broader list of candidate principles from which the above were chosen. Some of these
can be formally defined and then examined both by model-checking and by run-time
monitoring. Each of the candidate principles is accompanied by two examples - one
demonstrating its desirability, and one showing that acceptable distributed executions
exist that do not satisfy this principle, and hence it cannot be required of all distributed
executions.

Constant Composite-State Consistency. This principle assumes that all scenar-
ios are replicated in all components (as proposed in the present paper), and requires that
the all components go through exactly the same orchestrated state transitions, and hence
observe the same runs (even if not exactly at the same time). The replicated run is also
a legal run of a centralized or fully synchronized execution. This could be desired and
applicable, for example, in an application that has only pre-programmed actuation (as in
the most basic drone light show example). Clearly this could not be demanded in a case
of a reactive application with distributed input sensors, where two environment events
can occur in two distinct components, one after the other, but with a time difference that
is smaller than the inter-component communication delay, and where the sensing com-
ponent has to acknowledge the event receipt even before all other components learned
about it. As a result, the runs of the two sensing components will be different — each
having a state where its own sensing scenario has sensed the event and changed its state,
but none of the others have done so.

Always Eventually Reaching Composite-State Consistency. Under this princi-
ple, the entire specification is replicated as before, but components’ runs are allowed
to diverge as long as there is at least one composite state that each component reaches
infinitely often. In other words, the components may diverge, as long as sooner or later
they maintain the same view of reality (not necessarily at the same time). An exam-
ple of such an application can be seen in a distributed application of industrial robots
performing manufacturing tasks in parallel on a large piece of sheet metal, where the
order of events across robots is not critical as long as all components are occasionally



synchronized and are at the same state (e.g., when releasing the finished piece of sheet
metal and moving on to the next one). This however will not satisfy what is needed for a
highly orchestrated robotic collaboration (and not even for the basic drone light show).

Distinguishing What and How Scenarios. This principle views specifications as
being divided into scenarios that specify the criteria for success of the system’s opera-
tion, i.e., what the system should accomplish, and scenarios that specify how the system
should accomplish these goals. In classical programming the what scenarios appear in
requirements documents and test plans, and the Zow instructions constitute the applica-
tion. Research in areas such as automated program synthesis attempts to automatically
generate the details of the how from the specification of the what. Here we propose to
specify and retain both sets of scenarios, but require that only the what scenarios must
be complied with in the distributed run, while the ~ow scenarios can be violated in the
distribution process. In the light-show example, the show director wants to achieve the
appearance of cycles, or perhaps even just the appearance of pretty patterns. He or she
may not care if certain drones flash their lights out of order, especially if they are in
close proximity, the successive inter-drone flash delays are short, and the duration of
each flash is much longer than this inter-drone delay; a drone that misses its cue may
also be allowed to avoid flashing altogether in a given cycle; a drone whose battery
runs out may leave the show altogether; and, neighbors of a failing drone may change
their behavior as well . Thus, the divergence of runs among various components may
be unbounded, while the show goes on successfully.

An example of when this approach cannot be applied can be seen in the following:
a show director and an engineer created an elaborate show whose specification contains
many scenarios. For testing purposes the show was implemented on a single computing
component with multiple physical lights. The show is elaborate and its specification
gradually evolved to have many scenarios. The director has now left, and the engineer
has been tasked with distributing the implementation to the separate drones. As far as
the engineer is concerned, the entire specification is the what, everything that was done
in the centralized execution should be done in the same way in the distributed version —
he or she does not know which of properties were considered essential by the director,
and which can be compromised.

Language Equivalence. Under this principle we do not care about run variation
among the components. Instead, we only look at the sequence of events produced (trig-
gered) by the system, in all components, as ordered in the real world, according to
some global time stamp. In this case, we do not require that a particular run of the dis-
tributed environment, defined in this manner, be equivalent to a particular run of the
single-component system, but assume that there is some nondeterminism in both im-
plementations, and simply require that the two languages, each containing all runs of
the implementation, be equal. Thus the nondeterminism implied by the underspecifica-
tion that is already built into the original requirements will be exploited by the variation
imposed by the non-synchronized, sometimes-delayed, distributed execution. This can
indeed be viewed as a variant of the previous principle, where the existence (in the cen-
tralized execution) of synchronization points where more than one event is enabled, is
taken to be an explicit specification that selecting any of them would be acceptable. (We



assume that the event selection strategy is random, and that the application was verified
with all possible combinations of event selection.)

4.2 Semantic Consideration

It goes without saying that a success criteria to be added to the above is that the execu-
tion should comply with the basic BP semantics, in that, e.g., only requested events are
triggered, and events that are blocked are not to be triggered. The solution that we pro-
pose in the coming sections satisfies this basic requirement with one exception: There is
no reliance on cross-component blocking of already-enabled events. Clearly, when an
event is triggered, two b-threads may change their states, where one will start request-
ing a particular event ey, and another will start blocking that same e;. The effect of such
blocking is immediate. This semantics is generally preserved in the solution we will
describe, e.g., when these two b-threads change states together, in response to a single
event, within a single component. However, we introduce an assumption that relaxes
this requirement in that it allows event blocking to not take hold in the following case:
An event ey causes a b-thread BT; to change states and start requesting event ej. An
event e; is then triggered, and causes b-thread BT, to change state and start blocking e .
If after event e, occurred in one component, but before this event reaches a component
requesting e, ej is already triggered in that component, we do not consider it a viola-
tion of the specification or of the BP semantics. Another way to look at this relaxation
of the semantics is that it assumes that the application does not rely on the ability of one
component to force the blocking of already-enabled, not-previously blocked events in
other components, in time, before they are triggered.

For illustration, consider the following example: a robot-driven car is approaching
an intersection, and in order to avoid collisions it must communicate with other cars.
However, if the communication happens just before entering the intersection, any delay
or missed messages could result in an accident.

In order to avoid this kind of issue, programs designed for distribution should em-
ploy design patterns and methods that take a realistic communication delay into ac-
count. E.g., checking for other cars early, while approaching the intersection, rather
than, say, relying on scenarios to block all events of cars entering the intersection fol-
lowing the occurrence of an event reporting that one car already entered that intersec-
tion. We feel that this is a valid assumption in designing distributed systems and does
not contradict or make redundant the advantages of BP.

This assumption, formalized in Section 5, can thus be seen as a restriction on how
the application should be coded, or on features that must be added to the application if
not already written in this manner.

4.3 Additional Considerations

As distributed implementations introduce new risks, additional responsibilities have to
be imposed both on the distribution mechanism and on the application scenarios them-
selves.

Robustness. There is a desire to minimize the probability of error and of failure.
First, we would like the scenarios governing the behavior to be as simple as possible.



Second, ‘the show must go on’ even if one of the participants made a mistake or missed
their cue. For the latter, specific scenarios can probably be added. In the light show ex-
ample, we could add “when a drone observes that a predecessor drone has failed or is
delayed, it should nevertheless continue the cycle.”. Efficiency. Often, the joint opera-
tion should also be required to be efficient. Consider for example the case when many
bricks have to be moved from point A to point B over a narrow passage. A group of
robots may be arranged in a row — passing bricks from one to the next, rather than
each one traveling the entire distance. The scenarios should be designed so that inter-
scenario synchronization and coordination is minimized, or decreased, and both sce-
nario progression and the physical motion of bricks occur in parallel, asynchronously.
Such measures of efficiency are evaluated in the example in Section 7

5 Distribution via Replicate-and-Project

The execution of a classical BP model, as described in Section 2, is highly synchro-
nized and centralized by nature: at every step along the execution, the ESM gathers the
sets of requested and blocked events from each individual b-thread, selects an enabled
event (i.e., requested by some b-thread but blocked by none), and broadcasts it back
to the b-threads. While this underlies some of the benefits of BP [27], it also results in
limited scalability and distributability. Excessive synchronization tends to add unnec-
essary complexity, impact performance, and create inter-component dependencies that
reduce robustness. For example, having a scenario wait for an event that is supposed
to be requested by a scenario running on a separate, failed component might result in
deadlock. Furthermore, synchronization forces b-threads to execute in lockstep, which
can be undesirable if they are to model phenomena that occur at different timescales.

In this section we propose a distribution process that, given a centralized (undis-
tributed) behavioral model, generates a distributed one: It creates multiple component
models — subsets of the original, centralized behavioral model — each a behavioral
program, designed to be run on a separate machine. Run simultaneously, these behav-
ioral component models (or simply, component models) mimic the behavior of the orig-
inal system, but require much less synchronization. Below we elaborate on the abstract
concepts and formal definitions of the proposed process.

Each of the component models produced by our distribution process is a behavioral
model in its own right, intended to be responsible for a certain subset of the events of
the original model, which are uniquely owned and controlled by it — meaning that
no other component can request or block them. The behavioral component models are
intended to be executed in an asynchronous manner in a distributed system, resulting in
a natural, robust and simple extension of the scenario-based paradigm.

The main difficulty in this approach is to ensure that the distributed components be-
have in the same way as the original model although they are not synchronized at every
step. In mitigating this difficulty, the crux of our distribution process is the replication
of the entire set of original scenarios in each of the distributed components, granting
the components the ability to follow what other components are doing, but avoiding
synchronization whenever possible. First, there is no central, coordinating ESM. Every
component runs a separate, local, ESM, which by default, performs local event selec-



tion without synchronizing with other components. However, at every synchronization
point where multiple components have to agree on the particular event to select, the
ESMs of these components do synchronize.

The communication between components is asynchronous, and they notify each
other about chosen events as they progress through the scenarios. Keeping track of each
scenario state is simply a matter of listening to incoming broadcasts and updating the
current state. This asynchrony is a cornerstone of the process, allowing us to generate
true concurrent distributed models.

The classical problem of multicasting or broadcasting a message efficiently in a
distributed network is well studied (for example, the authors of [33] present an ap-
proach for minimum-energy-broadcasts in distributed networks with limited resources
and unknown topology). However it is beyond the scope of this paper. For simplicity
we assume that the cost of those broadcasts and bookkeeping is small. Note that even in
systems with a large number of components and scenarios, a component often needs to
keep track of only a small subset of the other components; for example, an autonomous
car considers other cars only when they are in its immediate vicinity, and does not have
to keep track of all the vehicles in the world. Still, this dynamic registering and un-
registering of components is also beyond the scope of this paper and is left for future
work.

In the remainder of the section we formalize these notions and the distribution pro-
cess itself.

5.1 Defining Event Components

Let M denote a behavioral model over event set ¥. An event component E is a subset of
the global event set, E C ¥. Intuitively, each subset E reflects (or is implicitly defined
by) a physical component of the distributed system and its responsibility in terms of
physical capabilities and/or environment interfaces, i.e., sensors and actuators, that this
component has. An event e € E is said to be a local event of E; otherwise, if e ¢ E then
e is external to E.
A collection of event components {E},...,E;} is an event separation of ¥ if
f»‘:l E; =X. An event separation is strict if it also forms a partition of X:

Vij, 1<i#j<k — ENE;=0.

In the remainder of the paper we will only deal with strict event separations and assume
that they are provided by the user. Automated ways of generating an event separation
are discussed in section 8.

5.2 Creating Behavioral Component Models by Replication and Projection

Given a behavioral model M = {BT',... , BT"} over event set ¥ and a strict event sep-
aration {E\,...,E;}, each event component E gives rise to a behavioral component
model C, in the following way. C is the behavioral model C = {BTEI, ...,BT}}, obtained
by projecting each of the original b-threads onto event component E. The projection



operation, denoted as C = projegt(M ,E), transforms each of the original b-threads as
follows. If BT* = (Q',4(,, &', R, B') then

BT;; = (Q'.q0,8' . Rp;, By

is defined as follows: The state set O, the initial state q6 and, most importantly, the
transition function & which specifies how events cause state transitions, are replicated
by the projection process without change. The original labeling functions R’ and B,
namely the sets of requested and blocked events in each state, are projected onto the
respective Rj'E and Bj'E according to the rules:

That is, the projected b-threads are modified to request and block only events that are
in E; but because & is unchanged they continue to respond in the same way to the
triggering of all events, including those not in E. Consequently, where an external event
is requested in a b-thread, it is modified to only be waited-for.

Now, given a (strict) event separation {Ej,...,E;}, our distribution process entails
projecting the model M onto each of the event components, producing a set of compo-
nent models {Ci,...,C;} such that

Vil <i<k, C; = project(M, E;)

By treating each component C; as a separate behavioral model that performs event
selection and scenario advancement (i.e., state transition) locally, the components can
be run independently and in a distributed manner. This is, however, qualified by the fact
that, in order to keep the execution consistent between components, at certain points two
or more components need to synchronize with each other. This is discussed in detail in
the next subsection.

The following useful corollary is a direct conclusion that arises from the definition
of the distribution process, when applied in the context of strict event separations.

Corollary 1. An event e € X can be selected by at most one component.

Proof. {Ej,...,E;} is a strict event separation, hence there is only one value of i such
that e € E;. Only C; can request e, since, by the definition, in all other components Cj,
J # i, the requests for e are replaced by waiting for it. Therefore only C; can select
e. O

5.3 Distributed Execution of Replicated-and-Projected Component Models

As discussed in Section 4, despite their parallel asynchronous execution, it is our goal
that component-model execution be consistent with each other and with that of the orig-
inal model. Since in the specification more than one event may be requested at a given
state, occasionally these distributed runs need to be synchronized. In this subsection



and the next we describe the mechanics of parallel distributed execution of component
models, and the specific synchronization constraints this execution is subjected to.

The R&P approach includes using in each component a modified BP execution
infrastructure. The component’s ESM is different from the one described in Section 2,
in that it broadcasts to other components its local independent decisions, it processes
similar messages received from other components, and, when required, it synchronizes
with other components to make a joint decision.

Specifically, the following rules govern each component’s ESM and the distributed
execution.

1. Each component has an event queue, to the end of which the component’s ESM
can push (i.e., add) events, and from the front of which it can pop (i.e., remove and
process) events.

2. When a b-thread enters a new state, the execution infrastructure determines whether
or not it is an inter-component decision point (ICDP), i.e., whether or not it should
induce synchronization with certain other components (ICDPs are defined in the
next subsection).

3. When a component’s ESM receives an event that was broadcast by another compo-
nent, the event is pushed to the end of the component’s event queue.

4. When a component enters a new state (either initially, or following re-synchronization
of all b-threads following the triggering of an event that affected at least one b-
thread), the ESM does the following:

(a) If the component’s event queue has at least one event, the ESM pops the first
event from the queue, and triggers it (i.e., notifies affected b-threads, who then
change states and re-synchronize).

(b) If the queue is empty, then

i. If one of the b-threads is in an ICDP, the ESM waits for the components
specified in the ICDP to reach the corresponding ICDP and/or confirms
that they are already at that point (note that no component goes past an
ICDP without synchronizing with the others). If two ICDPs are in effect
concurrently, they are handled, separately, in arbitrary order. Hence, all the
components involved in an inter-component decision consider the same
sets of requested and blocked events. The components then synchronize
and mutually agree upon the triggered event. This event is then broadcast
to all components (including the ones involved in the decision itself). Note
that the chosen event may or may not be one of those that induced the need
for inter-component decision. In the latter case, the b-threads that induced
the ICDP will not react to the chosen event, and the component will be at
an ICDP at the next synchronization point as well.

ii. If there is an event that is in the local requested event set and not in the
local blocked event set (for the current composite, synchronized state of
all b-threads in the specification as modified locally under R&P), the ESM
triggers that event, and broadcasts it to all other components.

iii. If the event queue is empty and there is no event that is locally enabled,
the ESM waits for external events to arrive via broadcast from other com-
ponents.



iv. Otherwise, that is, if the event queue is empty and there is no event that is
locally enabled, the ESM waits for external events to arrive via broadcast
from other components.

5. When b-threads are notified of selected events they change their states according to
their local state-transition function (which is identical in all components and is the
same as in the original non-distributed specification).

We observe that deadlock-detection needs to be treated differently in the distributed
case compared to the centralized case. According to the semantics given in Section 2,
the system can detect a deadlock if the ESM determines at some point that all requested
events are blocked, so that none can be selected. This, of course, holds only in the case
of static scenarios, and where simulation of environment behavior is already included in
the model. By contrast, in the distributed case this is no longer the case, as components
begin to serve as each other’s environment: If one of the local b-threads waits for an
event that is external to the component, another component might broadcast that event.
Thus, the component should just be stalled until such a broadcast arrives.

Definition 2. A distributed model produced from a behavioral model M, with respect
to a strict event separation, S = {E\,...,E}, denoted as D(M,S), is defined to be the
set of projections of M along the components of the event separation:

D(M,S) = {project(M,E}),...,project(M,E;)}.

Executing a distributed model means executing the component models (i.e., the projec-
tions) according to the operational semantics defined in this section.

5.4 Conditions for Inter-component Synchronization

The following definition is useful in identifying the points during the execution in which
multiple components need to synchronize:

Definition 3. Given a component model C; = project(M,E,), a b-thread BT' and some
state g € Q'. We say that BT' is controlled by C; at state q if one or more of Ej’s local
events is requested or waited-for in g; i.e., if 3e € E; such that §'(q,e) # q or e € R'(q).

Definition 4. Given a component model C; = project(M,E;), we call a state q € Q'in
a component’s b-thread BT" an inter-component decision point (ICDP) if and only if q
is controlled by multiple components and e € E; such that e € R'(q).

The R&P distribution process dynamically determines when a b-thread is in a state
that is an inter-component decision point per Definition 4.

For example, assume that in the original specification for a four-wheel vehicle a
single b-thread requests two events (e.g., steerRight and steerLeft), allowing the ESM
to non-deterministically choose one, as would be the case if a ‘random walk’ were
desired. Then, in the distributed implementation, if the two events end up in a single
physical component, this will not be an ICDP. But, if they are in separate components,
coordination will be required, naturally, and this will be an ICDP. Consider also the
case where these two events are requested by two separate b-threads. In a centralized



implementation this will be valid, especially if each of the two b-threads also waits
at this point for the other b-thread’s event and stops requesting its own if it sees that
the other’s request is selected. Moreover, if the two events are in distinct components
as before, then the requesting and waiting (in a single b-thread) would cause the cor-
responding state, which appears in the replicated b-thread in both components, to be
marked as an ICDP, yielding the same sets of runs. Alternatively, if the events are in-
deed in physically independent components, as would be the case when steerRight is
implemented by advancing (rolling forward) the left front wheel, (and steerLeft, respec-
tively, by advancing the right wheel), then the developer has the option of removing the
waiting-for-the-other-event from the bSync call in that state. In this case, these states
will no longer be ICDPs, and one of the possible runs is that both requested events will
be selected (one after the other), both front wheels will be advanced, and the vehicle
will advance forward rather than turn. We note however, that here the specification and
the set of runs has changed dramatically to accommodate, or take advantage of, some
new capabilities of the distributed environment, and we no longer attempt to preserve
the set of original runs.

It is important to note that the properties that induce the existence of an ICDP are
properties of a single state of a single b-thread and not of the entire specification: the
set of a all b-threads may, at the same time (i.e., at a given synchronization point),
request and/or wait for events controlled by multiple components, but if no single b-
thread is controlled by two components, this will not force an inter-component decision.
However, at any synchronization point in any component (which means synchronization
of all b-threads in that component), if a single b-thread is in an ICDP, the ESM will
synchronize the entire component with the other affected components.

When at an ICDP, the actual joint decision of multiple, already-synchonized ESMs,
can be performed, e.g., via a distributed leader election protocol [10]. Once a specific
ESM is selected as the leader, it chooses the next triggered event based on the local
requested and blocked events in its current state.

Note that Definition 4 mandates that the requested-events set not be empty. This
restriction reduces the scope of when an ICDP is called for. Consider for example a
logger scenario that, obliviously to any synchronization implications, waits for all pos-
sible events in the system and writes the relevant data to a log file (without requesting
any behavioral event). Without the requirement that at least one event be requested
by the b-thread causing the ICDP, such a simple logger would cause the entire execu-
tion to synchronize at every event selection. However, this feature, which enables more
asynchronous execution, has its price. E.g., two such simple logger scenarios running
in two separate components may observe differently the order of a given sequence of
events. The issue of seeing different orders may be resolved either by programming the
application such that it induces an ICDP only when it is called for explicitly by the
requirements, or by order-enforcing infrastructure, such as the one as described below
in Subsection 5.5 and Assumption 1.

5.5 Equivalence to Centralized Executions

As described above, given a centralized behavioral model M over an event set ¥ and a
strict event separation {Ej,...,E;}, our distribution process produces a set of compo-



nent models {Cj,...,C;}, whose execution then follows a very particular protocol. We
would like to prove that, under certain assumptions, this distributed model behaves like
the centralized model, i.e. the set of all possible executions of the distributed model is
identical to those of the centralized model.

First, we present the following assumptions.

Assumption 1 (Strict and total event ordering). Given D (M,S) (Definition 2), we
assume that there exists a strict total ordering of all selected events, and this ordering
is global and visible to all components (see Section 4). L.e., for any pair of events a,b
selected by any one or two components, exactly one of the following is true:

— a happened before b, or
— b happened before a

and, all components observe these events in the same order.

Stating the above more formally, we assume that in each component model C; =
project(M, E;), the event queue described in the R&P execution semantics is subsumed
by a virtual queue, termed VQueue and denoted (;, with the following properties as
well as communication and execution semantics. After an event e is selected by a com-
ponent C, the event is pushed atomically and simultaneously onto all VQueues of all
components (including the one where it was selected). Notice that the atomicity here
regards all pushes onto all queues, and any event selection or other important behavioral
processing action (including another collective push) occurs either before or after such a
collective-push action of one selected event. Each component processes events by pop-
ping them, one at a time, from its VQueue, and announcing the event to the b-threads
running in that component (which are, in fact, all the b-threads in the specification, as
modified/projected locally by R&P). The b-threads then change states according to BP
semantics and resynchronize locally. The next event selection at this component can
occur at any time during this process as long as all events previously selected by this
component (and pushed onto its VQueue and onto the VQueues of all the other compo-
nents), have been popped from the local VQueue (; and fully processed. However, the
local VQueue does not need to be empty when the event selection occurs, i.e., it may
contain events that were pushed onto it by other components, since the previous local
event selection.

One may consider this assumption as limiting the class of applications covered by
the formal argument to those where notification of events to components is serialized
by some virtual central controller, and, where each component waits for the arrival
of all events that were triggered in any component after its own last event selection,
before the next event selection. In Sections 8 and 9 we discuss why these limitations
are not of great concern and do not diminish from the power of R&P and of reduction
of synchronization requirements.

Assumption 2 (No reliance on cross-component blocking of already-enabled events).
Let D(M,S) be a distributed model that is being executed. For a given component Cj,
let Q,- be the totally ordered set {ej,es,... ey}, i.c., these are the pending events in its
VQueue. Let r = (g',...,¢") be the component’s current program cut (Definition 1).



The component’s enabled events are:

£~ (Ui ) (Umo))

We assume that popping events from the queue does not remove elements from Ey., i.e.,
VIi<m,Letq =0(...8(5( er1)e2)...,e)and

E (UBﬁ(q‘f)) =0 (1)

This is in line with the discussion of not relying on cross-component blocking of already-
enabled events in Subsection 4.2. In other words, we assume blocking is done suffi-
ciently in advance to avoid race conditions.

Lemma 1. Under Assumptions 1 and 2, the set of all possible executions (the language)
of M is identical to the set of all possible executions produced by the component models
{C1,...,Cy} when run jointly in a distributed fashion.

This lemma, which is the main proven result of this work, is of practical importance,
as it implies that the proposed R&P distribution process will not cause the model to
behave in unexpected ways. As discussed under the Language Equivalence principle
in Subsection 4.1, note that the lemma is about the collection of all runs, and does not
claim that if the distributed and centralized models are run side-by-side, they will al-
ways produce the same run. The main reason is that in a cut where more than one event
is enabled, we cannot guarantee that two side-by-side runs of the executable specifica-
tion will make the same choice; and, this holds independently of whether either of them
is centralized or distributed. Given the language equivalence result, one can study and
analyze the centralized version of the model (which is far easier for humans to grasp and
comprehend, and for tools to analyze) and the conclusions will apply to the distributed
setting too. We will discuss some of the implications of this result in Section 9.

Note that for the lemma to hold we also implicitly assume that each enabled event
has a positive probability of being selected. If the event selection is unfair, in the sense
that it always selects certain events and not others in particular situations, then the
lemma will not hold. We do not consider this assumption to be a major constraint on
the kind of applications supported by R&P.

Proof of Lemma 1: Assumption 1 and Assumption 2 shape the rest of the proof.
Components select events based on standard BP execution semantics applied to the
replicated-and-projected specification. Those selected events are immediately pushed
into all the event queues of all components. This operation is instantaneous and defines
some global order among the selected events. We do not define when components pop,
announce, and process events from their event queue, but simply assume that they do
so at some point, and soon enough as to not violate assumption 2.

Claim 1. In a distributed execution of D(M,S), if at any point in time all components
empty their event queues Q; (processing the events), then the cuts of all component
models are at the same state.



Proof. Given a component model C; = project(M, E;) and its event queue O;, let {e;, , ey, . .

be all the events, in order, popped from the queue and processed by the component since
the execution started. By Assumption 1, the indices {/1,, ...} are identical for all com-
ponents. And, since we assume that selected events are pushed into all event queues in-
stantly, once components empty their queue the total count of processed events is also
the same for all components.

While it may be obvious that at any instance at most one event will be selected,
in exactly one component (and all components will eventually see this event), when
considering possible causes of divergence it is useful to notice that:

1. Given that components are, in general, not synchronized, their event selections are
always strictly ordered. The event selection in one component is always before or
after any event selection in any other component.

2. In a given cut in a given component, if (after R&P) multiple events are enabled,
then:

(a) If these enabled events are controlled by this same component, then this is
the only component in which they can be enabled. The one event that will
be chosen by this component from this set will be visible identically to all
components.

(b) If the enabled events are controlled by multiple components, then the cut meets
the requirements for ICDP, and all the relevant components are also synchro-
nized at the cut at hand; a single event will be chosen via a an agreed-upon
decision, made for all of them.

Therefore, all components process the same totally ordered set of events {611 velys €, }.

Observe that in the execution of D(M,S) all components begin at the same initial
program cut <q(1), ...,qp)» and after m steps a projected b-thread BT} in component C;
transitions to some state ¢, = 8(...8'(8'(¢}), e, ),e1,) .-, ey, ). By definition of the pro-
jection process, the & functions are identical across components, and hence all projec-
tions of each thread proceed to the same state, Vi, r : ¢, = ¢',. Therefore all component
end up in the same cut. The claim follows. O

Corollary 2. Given a distributed model D(M,S), all the components process the same
totally ordered set of events.

Proof. Follows immediately from claim 1. O

Using corollary 2 we can talk about the sequence of events processed by D(M, S),
as all its components process the same sequence (albeit they might do so at different
speeds).

We now define what the formal language generated by a behavioral model is, and
prove that the languages of the distributed model and of the undistributed model are the
same.

Recall that for an undistributed model M an enabled event at some program cut
is an event that is requested by some b-thread and is not blocked by any of the b-
threads. Recall also that under R&P all components run all b-threads but requesting
and blocking of events take place only in components that control these events. We thus
extend the enabled event term to a distributed system D (M, S) as follows:

? elm }



Definition 5. In a distributed model D(M,S), an enabled event is one that is requested
by some b-thread of some component in which all b-threads are presently synchronized
(i.e., a component that is at a cut), and, is not blocked by any b-thread in that compo-
nent.

Definition 6. Letr A(r,e) denote the program cut transition function, where r is a pro-
gram cut and e € ¥ is an event. A is fully defined by the b-threads state transition
function & as follows: forr = {(q',....q"),A(r,e) = (8'(q',e),...,8(q",e)).

Definition 7. The language L of a behavioral model M denoted L(M) is a set of words
defined over the alphabet £. A word w = ejey ... is in L(M) if its letters constitute a
legal run of M; i.e., if we begin in the initial cut and apply A according to the sequence
of events in w, the next event is always enabled in the current cut.

The language of the distributed model D (M) is defined similarly. A word w is in
L(D(M,S)) if and only if there exists a run of L(D(M,S)) where the components select
the totally ordered set of events in w. (We assume that the environment is incorporated
into the behavioral model as b-threads that non-deterministically request environment
events.)

The equality between L(M) and L(D(M,S)) will follow from the following claim:
Claim 2. L(D(M,S)) C L(M)

Proof. At any time during the execution of distributed model D(M,S), the enabled
events are as determined by the cuts of those components that are presently in a cut (in
fact, one can also conveniently assume that a cut transition in a component is always
atomic in the sense that a component can only be observed when in a cut, yet not all
components may be in the same cut at the same instance of time). As components
cannot block external events, the set of enabled events at a given instance is the union
of sets of enabled events of all components which are in a cut.

We will denote by EM the set of enabled events of a centralized model after selecting

m > 0 events. Likewise, we denote E,Iz'f the set of enabled events of component C; in
the distributed model D(M,S) after m events have occurred. We do not specify the
number of events / < m that were actually popped and processed by the component.
ED =uU J-E,g'j is defined as the set of enabled events in the distributed model after m
events were selected and each component C; has processed [; < m events. By definition,
the set of initial enabled events of M is

B = (R )\ (U () @
and after m steps the set of enabled events of M is
Ey = (UR@N\(UB'(4) 3)

1

where (¢',...,q") is M’s program cut after m events have occurred.



The set of initial enabled events in the distributed model D(M,S) is EY. Clearly
EP =E}.

Consider the distributed model D(M,S) after m steps, i.e., after selection and
VQueue-ing of exactly m events as counted collectively in the entire model, and exam-
ine an arbitrary component C;. The component has processed / events, where [ < m,
and has m — [ events in its VQueue. Specifically, it has processed the sequence of events
defined by the totally ordered set {ej,ea,...,¢;} , and Qj ={eri1s---r€m}

Letr= (q}, e ,q?) be the current program cut of C; and let &; be the set of enabled
events of C; after processing [ < m events.

By Assumption 1, if Q ; contains an event selected by C; then the component will
not attempt to select another event, until processing that event, and therefore, effectively,
& = 0. Otherwise, at this stage the set of enabled events is defined by:

& = [(Lj)R"(q")> \ <LiJBi(qi)>

<URK%0\<LWH%O- “)
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Whenever C; processes any number of the m — [ events in 0 i, no enabled events will
removed from &, for the following reasons:

— No b-thread will change into a state where it blocks events in E[Dj . This is due
to Assumption 2 which claims that the application does not rely on instantaneous
blocking.

— No b-thread that requested an event will change into a state where it no longer
requests this event as this would imply that this b-thread was simultaneously re-
questing a local event and waiting for an external one which would then require
an ICDP. As discussed before, an event chosen by an inter-component decision is
considered as selected by all participating components, and we had assumed that
0 contains no event selected by C;.

Therefore
VO<I<m:& CEy.

By definition, &,, is the set of enabled events in component C; after processing all
the m events from the VQueue, therefore, as the VQueue is empty, &, is simply:

En = [(LiJRi(qi)> \ <LiJBi(qi)>
o) )

ﬂng




By the way we defined E,I,?j the following holds: EN = &, for some I < m, but as
we saw V0 < <m:& C EM therefore EDi EM and the following holds:

m>»
Vm>0:ER = UjE, CEM.
Therefore L(D(M,S)) C L(M). O

Claim 3. The language of a behavioral model L(M) is equal to the language of its
distributed version L(D(M, S)).

Proof. We need to show that L(M) C L(D(M,S)). That is trivial: Assume that a run
of D(M,S) always empties its VQueues instantly as soon as events are pushed. In this
case the distributed model would behave identically to the centralized version. Ergo
L(M) CL(D(M,S)).

As L(D(M,S)) C L(M) by claim 2 it immediately follows that

L(D(M,S)) = L(M)
O

This concludes the proof of Lemma 1, which also implies that the distributed model
behaves correctly, i.e., produces executions that are allowed under BP semantics.

6 Per-Component Timescales

As explained earlier, in a centralized behavioral model, all b-threads must synchro-
nize in order for the ESM to announce the selected event. The b-thread that takes the
longest to reach its synchronization point (e.g., because it performs slow local calcu-
lations or writes to a file) forces the rest of the b-threads to wait until it synchronizes.
This lockstep execution thus results in the slowest b-thread dictating the timescale for
the whole system. This is a common issue in behavioral models that involve multi-
ple scenarios operating on different timescales (see, e.g., [17]), and it also applies to
our distributed variant of BP: for example, a slower component might experience de-
lays before broadcasting events that a faster component depends on, forcing the latter
to wait. Furthermore, external events can “pile up”, increasing the processing time of
future event selections and delaying the selection of potentially crucial events.

In this section we discuss how to allow the generated components to operate effi-
ciently on different timescales.

Previous work [17] has tackled this difficulty in a variety of ways. One approach
in [17] introduced an eager execution mechanism for behavioral models. This technique
lessened the severity of the problem by sometimes allowing the ESM to trigger an event
even when some of the b-threads have not yet synchronized. Our distribution technique
lends itself naturally to this kind of idea, because within a given component, we know
that b-threads controlled by other components, which have not synchonized yet, cannot
block local requested events. Thus, by applying a method similar to eager execution,
the ESM does not have to wait for b-threads which wait only for external events (such



b-threads may be in the original specification, or they may be the projected version of
b-threads with event requests changed to waiting for events).

In our distributed setting, eager execution can be applied as follows. Given a behav-
ioral model M = {BT',... BT"} and its distributed component models {Ci,...,Cy},
let ¢ € Q' be a state in which b-thread BT’ is not controlled by component C ;. Ob-
serve BT}, i.e., the copy of BT' that is running in component C;. Because BT} is not
controlled by Cj, it does not request or wait for any local events and must be waiting
for an external event e controlled by some other component C,,. In other words, until
such time as e is triggered by C,,, thread BT} will not affect local event selection in

component C;. In such situations we propose to temporarily detach thread BTji from its
local ESM, effectively allowing event selection in component C; without considering
BTJ-’. This allows component C; to operate in its own pace, while BTj’ can be regarded
as temporarily operating in the same time scale as C,,. Whenever e is finally triggered
and BTj" reaches a new state ¢ in which it is controlled by Cj, it is reattached to the local
ESM. This technique readily enables different components to simultaneously operate at
different timescales.

To support eager execution within our distributed framework, the external event
queue within each component model needs to be decoupled from the distributed ESM.
Instead, each b-thread in the component receives its own external-event queue, and at
each synchronization point pops all external events and selects them one at a time. The
changes in the BP execution engine are summarized as follows:

— Each b-thread should flag itself as synchronized or unsynchronized with each bSync
call, depending on the state.

— A separate event queue is created in each b-thread, thus allowing b-threads to pro-
cess external events independently of the local ESM. A b-thread that arrives at a
state first empties its event queue by repeatedly popping and selecting an event.

— External events received at a given component are injected into all the b-thread
event queues by the component’s BP execution engine. B-threads that are already
awaiting the local ESM are notified to handle the external events.

7 Example and Evaluation

We now describe in more detail the distributed application upon which we carried out
our evaluation. Specifically, and as introduced in Section 3, we implement a drone-
based light show as follows. Each of four drones has a green light and a red light.
Initially, the drones “do the wave”, each flashing its green light briefly, in turn. This is
implemented by the scenario in Algorithm 1. The scenario in Algorithm 2 shows the
projection of the scenario in Algorithm 1 to Dronel.

Our example is a slightly richer scenario, coded as a behavioral program written in
C++. The four drones (labeled Drone( through Drone3) participate in “a green wave”,
starting with Drone0. After the conclusion of two full cycles, the drones jointly decide
which of the drones will start the next wave. The next wave will, again, last for two
full cycles, and the entire process repeats five times. For now, the entire specification
consists of a single scenario. In this implementation, the light-flashing events are la-
beled as FlashGreenO through FlashGreen3, each representing the flashing of the light



i=0;
while true do
bSync(R = {FlashGreen((0+i)%4)});
bSync(R = {FlashGreen((1+1i)%4)});
bSync(R = {FlashGreen((2+1i)%4)});
bSync(R = {FlashGreen((3+1i)%4)});
nextEvent = bSync(R = {NWO,NW1,NW2,NW3});
i = indexOfWave(next Event );
end
Algorithm 1: Pseudocode of a BP scenario demonstrating a simple undistributed wave example. For each bSync
synchronization point, R is set requested events. The events NW0 through NW 3 indicate a request the start a new wave at
the corresponding component. These events are requested after each full cycle, and BP event selection then decides which

component starts the new wave. The method indexOfWave translates an event NWi to the index i.

i=0;

while true do
bSync(W = {FlashGreen((0+i)%4)});
bSync(R = {FlashGreen((1+1i)%4)});
bSync(W = {FlashGreen((2+1i)%4)});
bSync(W = {FlashGreen((3+1i)%4)});
nextEvent = bSync(R = {NW1},W = {NWO,NW2,NW3});
i = indexOfWave (next Event);

end

Algorithm 2: Projection of the scenario of Algorithm 1 onto the component Dronel. Notice that requested events

controlled by other components become waited-for (represented by the W sets).

in the respective drone, in either a centralized or distributed implementation. The selec-
tion of the drone that will start the next wave is carried out by the scenarios requesting
four “new wave” events, NWO0 through NW 3, and the BP event-selection mechanism
arbitrarily selecting one of these events. We then associate each of the FlashGreen and
the NW events with the corresponding component. In this simplified example the dura-
tion of the flashing of each light is implemented in a delay (sleep) of 250 msec in the
b-thread that is about the request a FlashGreen event.

For simplicity, this implementation uses a centralizer component and does not im-
plement a leader-election mechanism. The centralizer is an infrastructure component
which is responsbile for: (i) receiving notifications of events triggered in any behavior
components, and broadcasting this information to all other components, and (ii) manag-
ing joint decisions, by receiving notices from any component ESM that wishes to syn-
chronize, which include the sets of requested and blocked events, waiting for all other
components to reach their corresponding state, selecting an event which is requested
and not blocked, and notifying all components of the selection. Note that the centralizer
serves only in simulations and studies of the approach, and that in real distributed im-
plementations broadcasting can be performed by a vartiety of techniques (including the
above), and joint decisions can be reached by classical distributed-processing solutions,
such as leader election.



At this point it is important to distinguish between the concepts of classes and ob-
jects and the concept of components as used here. Events may be self-standing entities,
or they may be associated with objects. In our example, each drone is a component,
and objects may reside within a component, or may span multiple component. Such
objects can be, e.g., a drone controller, a drone light, a wave effect (which can have a
beginning and end events, or a color property) or an entire light show. As can be seen in
the example given in Algorithm 2, each component executes “the entire specification”,
in this case, this one scenario. In the distributed implementation, when scenarios re-
quest or wait for FlashGreen events, they do not synchronize, but when they request the
four new wave events, they all synchronize. This results in a partially synchronized ex-
ecution, which mimics the centralized execution but does so with less inter-component
synchronization.

We compare our target, partially synchronized execution of a specification cre-
ated with the replicate-and-project implementation (R&P), with a fully synchronized
distributed execution (abbr. FS), where each component executes the same specifica-
tion, and they synchronize with every event selection. The decision in each component
whether to actually turn on its own light following its respective FlashGreen event is left
as a small implementation detail, i.e., the light-switch actuation method skips the oper-
ation if there is no direct connection with the device. Both implementations execute the
same one-scenario specification, replicated over four components. The total number of
events that occurred, all of which were broadcast to all components, is 44 — the same
for FS and for R&P (five repetitions of two four-event cycles, and four joint decisions).
In the R&P however, only four of these required synchronization. The total execution
time was the same in both cases, dominated by the duration of the light flashes, but if
synchronization delay is artificially increased, total execution time is increased accord-
ingly (e.g., a 100 msec delay purely due to synchronization, in addition to any ordinary
communication delay, would add 400 msec to the duration of each cycle of this single
wave).

We now extend our mini-light-show example with another wave of flashing lights.
We add a scenario in which, starting with Drone2, each of the drones briefly flashes a
red light, in its turn. This multi-cycle wave continues uninterrupted and with no change
until the ten cycles of the green wave terminate. The delay (sleep) before requesting a
FlashRed event is 1000 msec. When multiple events are requested e.g., both a FlashRed
together with FlashGreen or NW, the ESM selects an event at random. The forty Flash-
Green events in the ten-cycles determine the beginning and end of the run, and the
number of FlashRed events selected during this time varies. Since we are presently
more interested in understanding the underlying effects than in measuring improve-
ments over a large number of runs, we suffice with this artificial example. To highlight
these effects we show in Table 1 a comparison of the two cases when in both FS and
R&P, 44 FlashGreen events were triggered.

The basic communication delay in these experiments is set to 50 msec, resulting in
100 msec delay for broadcasting an event occurence via the centralizer.

Some interesting explanations and observations include:

— In FS, at every synhcronization point, both a FlashRed event, and, either a Flash-
Green or NW events are enabled. This is true regardless of sleep delays and number



of components. Hence in such runs, on average, half of the events will be FlashRed.
By contrast in R&P, FlashRed is enabled in a component together with one of the
other two events in a way that depends on lengths of sleep delays and on the num-
ber of components in the cycle, yielding, in our case fewer FlashRed events during
the run.

— Common to all runs is a 40 %250 msec taken by the FlashGreen events, plus 4 x 100
msec minimum number of joint decisions, plus about 3 seconds of overhead (total
of 13-14 seconds).

— The 41 seconds duration of R&P is the result of adding to the above ~13 seconds
28 % 1000 msec FlashRed events.

— The 67 seconds duration of FS is the result of adding to the above 41 seconds of
R&P 17 % 1000 msec of additional FlashRed events and 85 * 100 msec communi-
cation delays due the additional synchronizations, all of which had to occur during
the same ten cycles of the green wave.

— Even though the total number of events triggered in R&P is less than in FS, the
per-second event rate is higher.

— Inthe worst case, the performance of a distributed system resulting from an R&P dis
tribution process will be the same as when a replicated specification executes with-
out local changes in all components, with full synchronization at every event selec-
tion.

Table 1. Comparing an execution of a fully synchronized (FS) implementation of a two-scenario specification in a four-
component configuration, to an execution of the partially synchronized replicate-and-project implementation (R&P). See
discussion in the Section 7.

Measure: FS |R&P
Number of FlashGreen event notification broadcast | 40 | 40
Number of FlashRed event notification broadcast® | 45 | 28
Number of “new wave” event notification broadcast| 4 4

Total number of events 89 | 72
Total number of Inter-component synchronizations | 89 | 4
Run duration (in seconds) 67 | 41
Events per second 1.32|1.75

While the above examples illustrate and quantify the kind of savings resulting from
reduced synchronization, we must note that the synchronization delay itself is some-
times not the main issue. For example, if we were to replace the FlashGreen event(s)
in our design with, e.g., pairs of TurnGreenLightOn and TurnGreenLightOff events, all
scenarios might have had enough time to synchronize with each other following the
event TurnGreenLightOn, in parallel to waiting for the time ticks that would signal the
end of the shining of the light. A relaxed synchronization approach, separating the sce-
narios of the two waves into separate modules within each component, would further
streamline an otherwise fully synchronized implementation. Nevertheless, the reduced
inter-component synchronization still helps in simplifying the designs, and in enhanc-
ing system robustness. For example, consider recovering from loss of a drone, due to



battery running out, while “the show must go on”. It is much easier for all drones to
observe and react to delays in other drones’ behavior, when they are fully functional as
opposed to waiting in a global synchronization point (even when the latter is enhanced
with timeout facilities as in [18]).

8 Related Work and Comparison

Distributed system have been the subject of extensive research and studies; see, e.g., [3,
32]. In general most approaches that aim to distribute a centralized system fall into one
of the following classes:

1. The distribution process employs a kind of orthogonalization (or partitioning) pro-
cess that decomposes the system into independent, orthogonal partitions that form
the distributed system. This might be done with some user intervention and input
or using a fully automatic process. The resulting executable partitions model parts
of the system which can be ran, in parallel, as a distributed system without ever re-
quiring to synchronize. Typical examples include the parallelization of an abstract
computation, or the execution of a multi-agent system where an agent may wait for
another agent’s messages, or may even coordinate a joint application decision, but
they cannot in any way depend on synchronizing with each other their own internal
computations and processes.

2. The executable partitions that form the distributed system are given in advance, and
they do not map to logically-orthogonal parts of the specification. Instead, they are
formed to satisfy other constraints (physical properties, performance, etc.) Unlike
systems with orthogonal partitioning, some synchronization might be required to
ensure the distributed system has largely the same function as the original one. A
typical example would be a distributed database whose components are defined by
physical machine capacities and boundaries. The component synchronize as part of
their underlying computation, to ensure properties such as atomicity, consistency,
isolation and durability (ACID).

Each class has a unique difficulty: Orthogonalization or synchronization. In terms of
system design synchronizing distributed systems enjoy a larger degree of freedom in the
way the distributed partitions can be chosen. Behavioral specifications generally do not
expose orthogonal partitions that map to the physical parts or properties of the system,
or at times, none at all. Performance-wise, the trade-off between an orthogonal and a
non-orthogonal approach can be seen as the trade-off between distribution performance
as opposed to execution performance.

Within the realm of behavioral programming, the research in [28] suggests an ap-
proach for orthogonal distribution, where the distributed system consists of multiple,
manually design, independent programs, termed behavior nodes (b-nodes), each with
its own set of internal events. As this is an orthogonal approach, those b-nodes never
need to synchronize with each other. Similar to our approach the b-nodes communicate
by external events, however those events require manual translation to and from internal
events. While in [28] the distributed system is generated by a manual partitioning of a



model into multiple b-programs, [15] proposes a synchronizing approach for distribut-
ing BP models by manually partitioning the b-threads of a single b-program into mod-
ules, where each module runs its set of b-threads and synchronizes with other modules
upon choosing events that might matter to other modules. The set of events that require
synchronization as well as which modules each events needs to synchronize with is
known a priori. The research in [28] and [15] contains examples of an orthogonal dis-
tribution approach and a synchronizing one, respectively, in behavioral programming.
However, in both approaches the component structure is dynamic and implied by the
specification, in contrast to the present paper where the component structure is dic-
tated by the physical structure of the system and external events emerge naturally and
automatically from internal events. Furthermore our approach supports more general
designs, inter-component scenarios and fine-grained synchronizations when scenarios
give rise to inter-component decisions.

A different framework for the distributed execution of scenarios is presented in
[12]. The approach there is similar to the one in this paper in that the distributed com-
ponents can each choose to execute events that they are responsible for, and selected
events are broadcast to all other components. Further, a coordinator component in [12]
forces the situation where, as in Assumption 1, all components observe a single event
order. The main issues with this implementation relative to R&P are that it requires
that individual scenarios are written to not have states where events of multiple compo-
nents are enabled. By contrast, R&P automatically coordinates all components when
reaching a state where a joint decision is required, and it allows components to advance
asynchronously when possible, and in particular, after locally selecting an event. An
advantage, though, of the implementation of always enforcing a common event order
in [12] is that it avoids the risk of sensitivity to different event orders. While Lemma
1 relies on such enforcement for the proof, R&P in general allows also for applica-
tions that forego this requirement, and solve order-dependencies in application-specific
means. However, we must note that the actual reliance in the implementation on a phys-
ical centralized coordinator for the entire distributed system carries many disadvantages
both in performance and robustness. The introduction of single order assumption in the
proof of Lemma 1, can be seen more as an abstraction — a requirement that is either
guaranteed by some efficient and robust means or by application-specific properties.

A more general, automatic handling of event-order dependencies in R&P , and pos-
sible generation of additional ICDPs, is left for future research, e.g. using formal meth-
ods, as discussed in Section 4.

The research in [14] describes (though without an implementation) a mechanism
for the distributed execution of scenarios with dynamic role bindings. There, synchro-
nization is done only among relevant components, as determined dynamically.

There has also been work on synthesizing scarcely-synchronizing distributed con-
trollers from scenario-based specifications [4]. Distributed finite automaton controllers
can be synthesized from scenario specifications in a way that greatly reduces commu-
nication overhead compared to previous approaches, especially compared to the broad-
casts of events as also suggested in this work. However, the synthesis procedure is com-
putationally complex and does not scale well as specification and system size increase.
In [9], the authors study a similar problem and present an approach for synthesizing



executable implementations from specifications given in a distributed variant of LSC,
termed dLSC.

Another work related to distribution of centralized scenario-based models (but out-
side of the realm of BP) is [34], which presents a synchronizing approach for distribut-
ing workflow specifications. This work exposes domain-specific knowledge in order
to be able to generate automatically distributed partitions and synchronization seman-
tics such that the resulting distributed system preserves the execution semantics of the
original centralized version.

Outside the scope of scenario-based modeling [7] is an example of distribution of
systems modeled using Petri Nets, specifically High Level Timed Petri Nets (HLTPN).
This research uses the orthogonalization approach where the HLTPN is decomposed
into subnets connected by shared places, nodes that are common to multiple subnets.
Arcs are not allowed to cross subnet boundaries, ensuring that the decomposing is an
orthogonal partitioning of the net. The shared places can be seen as global memory,
shared between multiple subnets, used to control firing of transitions, however there is
no synchronization between the subnets.

Further non-scenario-based research discusses the trade-off between performance
optimization and communication minimization in parallel and distributed settings has
been studied extensively. These two conflicting goals are discussed, e.g., in [5,39].
In [38] the author suggests imposing certain limitations on the communication between
the components, thus allowing for execution-time optimization to be performed during
compilation.

It is interesting to note that distribution approaches that rely on scenario-based spec-
ifications typically exploit the execution semantics of the modeling language to generate
synchronized distributed systems. Meanwhile, non-scenario-based approaches gener-
ally employ a form of orthogonalization, and usually rely on domain-specific knowl-
edge or on high-level temporal specifications to facilitate the distribution. As discussed
above, orthogonalization approaches are more rigid and are not always possible, feasi-
ble or applicable. To our knowledge there is scarcely any research that involves gen-
erating a non-orthogonal distributed system from a generic non-scenario-based speci-
fications. It appears that despite (and perhaps due to) the simplicity of behavioral pro-
gramming and of scenario-based specifications in general, it is generally amenable au-
tomated decomposition and distribution.

9 Discussion and Future Work

Previous research on scenario based programming has shown the great importance of
formal methods and tools in ensuring that the resulting models, composed of many
individual scenarios, perform as intended as a whole. Past efforts have yielded a large
portfolio of tools for model checking [24], automatic repair [21, 30] and compositional
verification [31, 16], and have even indicated that scenario-based programming may be
more amenable to formal analysis than other modeling approaches [22, 19].

Given the above, applying formal analysis in the distributed case seems even more
vital, as distributed models are inherently more difficult for humans to comprehend
than centralized ones. Fortunately, Lemma 1 enables us to immediately apply existing



tools in our setting. Because the centralized and distributed models present the same
behavior, it is possible to apply existing approaches to the centralized version and use
them to draw conclusions regarding the distributed case.

Future research on new applications of formal methods to distributed implementa-
tions can also distill situations and “critical states” where special handling is needed.
E.g., identify when there are special dependencies on observing a particular event order,
and devise solutions that are automatic, reduce synchronization, and reduce the need for
a total strict event order, and where the equivalence of the resulting distributed execu-
tion to the centralized one can be proven. For example, in the present implementation,
an application that waits for two events from two different components in any order,
and then transitions into the same final state, depends on guaranteed event order, and/or
on two ICDPs, where, in fact, neither is required. This research will also include proofs
for correctness of different distribution procedures — e.g., that in cases where the ap-
plication does not depend on particular event order, a particular distribution method
which does not guarantee Assumption ?? still works correctly. For example, cars arriv-
ing at an intersection, each detecting all other cars in their environment, do not have to
rely on observing identical event orders. We wish to devise a distribution methods for
scenario-based specifications for handling such situations, and prove their correctness,
namely, that the cars executing these scenarios in a distributed manner indeed cross the
intersection safely.

Nonetheless, in a distributed environment there are some hazards that do not appear
in the fully-synchronized model, and may thus be overlooked by existing tools:

— Inter-component deadlock: An inter-component deadlock occurs when a compo-
nent C has no enabled local events that it can trigger, and is thus waiting for certain
external event(s). However due to various reasons, these external events may never
arrive. For example, the reason might be that another component is actually waiting
for an event that C needs to trigger. Note that a situation where a component is wait-
ing for events local to a crashed component is not an inter-component deadlock, but
a soft deadlock, as restarting the failed component might resolve the issue.

— External event queue overflow: When a component repeatedly takes longer to
process external events than it takes the other components to trigger and broadcast
these events, could result in exceeding the memory available for the external event
queue. An example of this could be a logger component that takes too long to post
its log entries to a remote location.

— Latency: Communication delays can cause poorly-designed systems to exhibit un-
desired behavior. As we discussed in Section 5.5, Lemma 1 does not hold when
latency is too high, and so such errors cannot be detected by existing tools.

We are working on extending the presently available techniques to handle the issues
listed above. For instance, in the latency case an improved model-checking algorithm
might simulate a realistic latency for external event communication, depending on the
communication method used (e.g., wired communications over a local network will
have a much lower latency than a satellite connection). We are also exploring the use of
quantitative approaches to formal verification to attempt and derive bounds on the max-
imal size a queue can reach, given certain constraints on the broadcast and processing
times of system components.



In the context of inter-component deadlock, one approach for recovering from com-
ponent failure or missed messages could be adding state information to the external
events, permitting components that missed a transition to “fast-forward” to the correct
state in a scenario. Another direction could involve having multiple instances of critical
components, for redundancy.

As an additional future work direction, we would like to study approaches to choos-
ing a strict event separation. While the components are usually derived manually from
physical system requirements, at times it might be desired to delineate their boundaries
automatically based on other criteria. One approach is to use clustering algorithms that
take as input a function f that assigns, for every two events ej,e; € ¥ a correlation value
f(e1,e2) € [-1,+1]. The clustering algorithms then attempt to partition the events into
a strict separation into k components (with k either known or unknown beforehand),
such that two events are in the same component if their correlation is high and are
in separate components if their correlation is low. While this problem is known to be
NP-Complete, it can be approximated up to a log-factor [2].

10 Conclusion

The replicate-and-project approach transforms a centralized scenario-based specifica-
tion so that it can be executed in a distributed configuration, by creating component-
specific variations, based on each component’s capabilities. We have shown that the
resulting distributed models behave similarly to the centralized model from which they
originated. This important property allows us to carry out most of the modeling work,
including testing and analysis, in the centralized setting, which is easier to model-check
and reason about. The projected models retain the naturalness and incrementality traits
of behavioral programming. In their avoidance of excessive synchronization, they im-
prove robustness and the ability to model systems with multiple time scales. In addition
to the advantages of this approach in streamlining design and improving performance,
it captures the more general fact that distributed operations that are robust and efficient
often involve the sharing of knowledge between components, such that each of them
knows at least some of the rules that control the behavior of the others - a concept
whose applicability me go beyond scenario-based / behavioral programming.
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