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Fig. S1. From ray optics to wave optics. A scene rendered with our technique, showcasing various wave effects: (a) a Bornite ore with an interfering layer
of copper oxide; (b) a Brazilian Rainbow Boa, whose scales are biological diffraction-grated surfaces; and (c) a Chrysomelidae beetle, whose colour arises
due to multilayered interference reflectors in its elytron. The practical contribution of this paper is the ability to render such complex scenes, under rigorous
wave-optical light transport, at a performance that surpasses the state-of-the-art by orders-of-magnitude. The objective of this paper is not the appearance
reproduction of some material (a “diffractive BRDF”), but an accurate formulation of wave-optical light transport, where light is rigorously treated as waves
globally throughout the entire scene. We propose the generalized ray : an extension of the classical ray to wave optics. The generalized ray retains the defining
characteristics of the ray-optical ray: locality and linearity. These properties allow the generalized ray to serve as a “point query” of light’s behaviour, the same
purpose that the classical ray fulfils in rendering. Generalized rays enable the application of backward (sensor-to-source) light transport and sophisticated
sampling techniques, which are impossible with the state-of-the-art. We indicate resolution and samples-per-pixel (spp) count in all figures rendered using
our method. While these figures showcase converged (high spp) results, our implementation also allows interactive rendering of all these scenes at 1 spp.
Frame times (at 1 spp) for interactive rendering are indicated. See our supplemental material for the implementation, and additional renderings and videos.
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S1 Introduction
Under the ray picture of light, light consists of “luminous” corpus-
cles. As such a particle evolves by propagating and interacting with
optical systems, it traces a “light ray”. A particle’s position andmo-
mentum, i.e. the particle’s direction of propagation, serve as a com-
plete description of the light ray at a particular instant. Therefore,
it is convenient to study the dynamics of ray optics in phase space:
a 2𝑛-dimensional space that consists of 𝑛 independent position co-
ordinates, as well as 𝑛 momenta coordinates (often referred to as
the canonically conjugate variables). A ray, at a particular instant,
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corresponds to a point in phase-space. This phase-space pictorial
view of light is adopted, sometimes implicitly, by rendering theory:
we perform point queries in phase space by tracing rays from a
particular point, in a particular direction.
The concept of “locality” then becomes central to our discussion:

Ray optics permits a precise, simultaneous knowledge of position
andmomentum.This perfect localization iswhat enables us tomake
use of spatial-subdivision acceleration structures for ray tracing,
even achieving real-time performance.
On the other hand, under wave optics such locality is not possi-

ble. In wave optics, the basic descriptor of light is the wave func-
tion, which is the spatial function of the complex excitations of the
underlying electric field, and the momentum space becomes the
Fourier space. It is well known that a function and its Fourier con-
jugate (the Fourier transformed function) cannot both have finite
support, leading to an uncertainty relation: position and momen-
tum may not be both specified with perfect precision. Therefore, in
sharp contrast to ray optics, where the descriptor of light—a ray
or a collection of rays—is local, the wave function and its Fourier
conjugate serve as a global description of light. This loss of locality
in wave optics nullifies our ability to perform simple point queries
in phase space, and indeed this inherent uncertainty is a major dif-
ficulty in devising a formalism of wave-optics rendering.
A rich history of research focuses on attempts to restore, to a

degree, that “grainy” phase-space view of ray optics. Most notably,
the Wigner distribution function [Wigner 1932] (also known as the
Wigner-Ville distribution in mathematics) is a complete descrip-
tor of light that simultaneously provides information about both
the spatial and angular spectrum properties of the wave function.
Thereby, the Wigner distribution function serves to define the dy-
namics of wave optics in a phase space. For a more comprehensive
discussion onWigner optics, as well as the role theWigner distribu-
tion function plays in wave and quantum optics, the curious reader
is referred to Testorf et al. [2010]; Torre [2005].

In this supplemental material, we will overview the Hamilton-
ian optics formalism of ray optics. We will then briefly “quantize”
ray optics in-order to obtain wave optics. The Wigner distribution
function will then be presented, and we will discuss its relevant
properties. Then, we will identify the wave-optical analogue of the
classical ray, and discuss the formal conditions under which point-
wise sampling of the wave-optical phase space is possible. We will
also show how optical coherence arises naturally when sampling a
collection of such “wave-optical rays”.

S2 Ray Optics
Hamiltonian optics are developed from Fermat’s principle—the prin-
ciple of extremal action, which in the optical context means the ex-
tremal optical path. Specifically, the path taken by a light ray from
point ®𝒒1 to point ®𝒒2 fulfils

𝛿

∫ ®𝒒2

®𝒒1

d𝑠 𝜂
(
®𝒒′

)
= 0 , (S2.1)

with𝜂 being the refractive index of themedium and 𝑠 the arc length.
That is, the path where the optical path length (path length times
refractive index) is an extremum or is stationary, therefore the ray

path must follow the refractive-index gradient:

d
d𝑠

[
𝜂
(
®𝒒
) d®𝒒
d𝑠

]
= ∇𝜂

(
®𝒒
)
. (S2.2)

The above is reminiscent of Newton’s second law, hence a ray be-
haves as a classical point particle, with the refractive-index of the
medium serving as the mass of the particle. A force ∇𝜂 acts upon
this particle, thereby light bends—traces an Eikonal—as it propa-
gates through a refractive-index graded medium.

From Eq. (S2.2) we recognize the light particle’s momentum as

®𝒑 ≜ 𝜂
(
®𝒒
) d®𝒒
d𝑠

. (S2.3)

The momenta ®𝒑 are the canonically conjugate variables to the posi-
tion variables ®𝒒, and are the optical direction cosines (ray direction
scaled by the refractive index). We denote the vector

®𝒖 (𝑠) ≜
(
®𝒒
®𝒑

)
(S2.4)

as a ray. The ray ®𝒖 lives in phase-space: a vector space defined as
the cartesian product of the position and momentum space. The
dynamics of that ray, as it evolves w.r.t. 𝑠 , are quantified by the
Hamiltonian

𝐻
(
®𝒒, ®𝒑 ; 𝑠

)
= −

√
𝜂2

(
®𝒒
)
− 𝑝2 , (S2.5)

and Hamiltonian’s equations

d𝑞𝛽
d𝑠

=
𝜕𝐻

𝜕𝑝𝛽
and

d𝑝𝛽
d𝑠

= − 𝜕𝐻

𝜕𝑞𝛽
, (S2.6)

with 𝛽 ∈ {𝑥,𝑦, 𝑧}.
The above can be recast in operator notation into

d
d𝑠

®𝒖 = H®𝒖 , (S2.7)

with H ≜
∑

𝛽∈{𝑥,𝑦,𝑧}

[
𝜕𝐻

𝜕𝑝𝛽

𝜕

𝜕𝑞𝛽
− 𝜕𝐻

𝜕𝑞𝛽

𝜕

𝜕𝑝𝛽

]
. (S2.8)

Eq. (S2.7) is the ray equation, an operator-valued differential first-
order equation, and H is the Lie operator associated with the op-
tical Hamiltonian 𝐻 . The ray equation yields the closely-related
Eikonal equation, as well as the Snell’s law of refraction and the
law of reflection at an interface between two media.

The solution to the ray equation, representing the evolution of
the ray from 𝑠0 to some 𝑠 , can be written via the ray-transfer oper-
ator T :

®𝒖 (𝑠) = T ®𝒖 (𝑠0) , with T ≜ e(𝑠−𝑠0 )H . (S2.9)

The exponential map above maps the Lie algebra {H} into the cor-
responding symplectic Lie group of ray-transfer operators.

Linear optical systems and quadratic Hamiltonian. When the light
rays propagate roughly in the same direction, say the 𝑧-axis, we
take a paraxial view: The ray evolution variable 𝑠 is replaced with
𝑧, and ®𝒒, ®𝒑 become 2-dimensional vectors that live on the 𝑥𝑦-plane
at a particular instant 𝑧 = 𝑧′ of a ray’s evolution. Paraxiality implies
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𝑝2𝑥 + 𝑝2𝑦 � 𝜂2, hence the optical Hamiltonian 𝐻 (Eq. (S2.5)) can be
written in the quadratic approximation:

𝐻
(
®𝒒, ®𝒑 ; 𝑧

)
= 1

2𝜂( ®𝒒) 𝑝
2 − 𝜂

(
®𝒒
)
. (S2.10)

An interesting special case of paraxial optical systems are sim-
ple systems, where H does not dependant on 𝑧. Such systems are
known as linear optical systems, or “ABCD” systems. The latter
refers to the fact that T can be written in the following block-
structural form:(

®𝒒(𝑧)
®𝒑(𝑧)

)
= T

(
®𝒒(𝑧0)
®𝒑(𝑧0)

)
=

(
𝑨 𝑩
𝑪 𝑫

) (
®𝒒(𝑧0)
®𝒑(𝑧0)

)
, (S2.11)

with 𝑨,𝑩, 𝑪,𝑫 being 2 × 2 real matrices, and for non-absorbing
systems |T | = 1.

ABCD systems are of particular interest, as they include prop-
agation, and reflection and refraction of light at simple interfaces,
as well as curved interfaces (like lenses). For example, propagation
through a medium with constant refractive-index, or focusing by a
thin lens, admit the following ray-transfer matrices

Tpropagation =

(
1 𝑑

𝜂

0 1

)
and Tthinlens =

(
1 0
1
𝑓 1

)
, (S2.12)

respectively. We use scalars for the ABCD elements of the matrices
above to indicate that these systems are rotationally-invariant. 𝑑 is
the (scaled) distance of propagation, and 𝑓 is the focal length of the
lens.

S2.1 An Ensemble of Rays and Liouville’s Theorem
The discussion above centred upon the dynamics of a single ray.
We now extend the discussion to a statistical ensemble of rays. Let
𝜌 (®𝒒, ®𝒑 ; 𝑧) be the ray density function, which is a probability den-
sity function quantifying the statistical distribution of rays over
phase space. Given an arbitrary function of position and momen-
tum 𝑓 (®𝒒, ®𝒑), the average value of 𝑓 over the entire statistical en-
semble of rays is

〈𝑓 〉 =
∫

d2®𝒒 d2 ®𝒑 𝑓
(
®𝒒, ®𝒑

)
𝜌
(
®𝒒, ®𝒑 ; 𝑧

)
, (S2.13)

with the integration over the entire phase space of the system at
instant 𝑧. The function 𝑓 can be understood as an “observable”, for
example, the response of a camera sensor to light, or the reflectivity
of a surface.
It can be shown that the dynamics of 𝜌 are

𝜕

𝜕𝑧
𝜌 = −H𝜌 (S2.14)

d
d𝑧
𝜌 = 0 , (S2.15)

which in Hamiltonian dynamics are referred to as Liouville’s equa-
tion and Liouville theorem, respectively. The above illustrates im-
portant physics: Eq. (S2.14) means that the ray density evolves (up
to a sign) just as a singular ray. As a mental model, the “optical
flow” of light rays in phase-space can be thought of as the motion
of an incompressible fluid. The total quantity of that fluid is the op-
tical flux, while the phase-space volume occupied by that fluid is
known as the Étendue. The Liouville theorem (Eq. (S2.15)) implies

that the ray density in phase-space is a conserved quantity (ignor-
ing absorption), both locally and globally:

• The “optical fluid” being incompressible means that Étendue
is conserved, i.e. the optical fluid may move around in phase-
space, but the volume it occupies is unchanged, leading to
global conservation of density.

• Given any distinguished ray (®𝒒, ®𝒑), the density 𝜌 (®𝒒, ®𝒑 ; 𝑧) in
an infinitesimal volume around that ray can be understood
as a property of that ray, and propagates along the ray’s tra-
jectory, i.e. remains conserved locally around that ray as the
system evolves.

If, at some particular instant of evolution 𝑧, we “scoop” some of the
“optical fluid” out of the system, then the Étendue may decrease.
Étendue may only increase if we add additional fluid into the sys-
tem (i.e., inject optical flux).

Wemay relate the above to classical radiometry: the well-known
radiometric radiance is defined as

𝐿 = 𝜂2
𝜕Φ

𝜕𝐺
, (S2.16)

that is, the (differential) total quantity of fluid—the optical flux Φ—
over the (differential) volume this fluid occupies—the Étendue 𝐺 .
Thewell-known conservation of basic radiance, viz. 𝐿/𝜂2, in simple,
non-absorbing optical systems, is then an immediate consequence
of Liouville theorem.

A more comprehensive formulation of Hamiltonian optics can
be found in the textbooks: Buchdahl [1993] and Bass et al. [2009].

S3 Wave Optics
It is possible to recover aspects of ray optics as a limiting case of
wave optics (specifically, the Helmholtz equation reduces to the
Eikonal equation at the limit ℏ → 0). However, wave optics can-
not be formulated from ray optics purely via mathematical anal-
ysis. Instead, wave optics is typically brought forth from classi-
cal ray optics in a manner analogous to how quantum mechan-
ics arises from classical Hamiltonian mechanics, and we briefly re-
trace these steps: A heuristic approach known as “quantization” (or
“wavization”), first proposed separately by both Dirac and Heisen-
berg in different variations, is designed to obtain a quantum theory
from a classical theory, hence quantization is a mapping between
the theories. Quantization works by replacing the classical func-
tions 𝑓 (𝑞, 𝑝) on phase space with operators (“observables”) 𝒇 , act-
ing upon wave functions, as well as replacing the classical dynamic
laws (e.g., Eq. (S2.6)) with quantum dynamics.

Our starting point is a general classical non-relativistic particle
with Hamiltonian

𝐻
(
®𝒒, ®𝒑

)
=
𝑝2

2𝑚
+𝑉

(
®𝒒
)
, (S3.1)

where𝑚 is mass and 𝑉 is the potential function. The canonical po-
sition and momentum variables (Eq. (S2.3)) are mapped to their op-
erator counterparts

𝑞 ↦→ �̂� ≜ 𝑞 and 𝑝 ↦→ �̂� ≜ −iℏ 𝜕
𝜕𝑞

. (S3.2)
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The Hamiltonian operator then becomes

Ĥ(�̂�, �̂�) = − ℏ2

2𝑚
∇2
®𝒒 +𝑉

(
®𝒒
)
, (S3.3)

with ∇2
®𝒒 being the Laplacian w.r.t. the spatial variable ®𝒒.

Switching to the optical context, we note that the classical qua-
dratic optical Hamiltonian, Eq. (S2.10), is of the form of Eq. (S3.1),
with 𝑚 = 𝜂 and 𝑉 = −𝜂. Then, applying the mapping in Equa-
tion (S3.2),

Ĥ(�̂�, �̂�) = − ℏ2

2𝜂
(
®𝒒
) ∇2

®𝒒 − 𝜂
(
®𝒒
)

(S3.4)

becomes the quadratic wave-optical Hamiltonian operator.
We denote ψ(®𝒒 ; 𝑡) as the wave function, with ®𝒒 being spatial

position and 𝑡 time. The wave function is a complex function that
serves as a descriptor of light in the wave-optical context (it may
be understood as the excitations of the underlying electric field).
The evolution of the wave function is dictated by a time-evolution
operator

ψ
(
®𝒒 ; 𝑡

)
= Û (𝑡, 𝑡0)ψ

(
®𝒒 ; 𝑡0

)
. (S3.5)

The time-evolution operator must fulfil the Schrödinger wave equa-
tion:

iℏ
𝜕

𝜕𝑡
Û = ĤÛ , (S3.6)

which takes a form reminiscent of its classical counterpart (Eq. (S2.7)),
with time 𝑡 nowplaying the role of the classical paraxial system evo-
lution variable 𝑧. The Helmholtz equation of classical wave optics
can be derived from the wave equation above.
We may identify the momentum space as the Fourier-conjugate

of the position space: recognizing the eigenfunctions of �̂� as ei®𝒒· ®𝒌 ,
we may write

ψ
(
®𝒒
)
=

1

(2π) 3
2

∫
d3®𝒌 ψ̃

(
®𝒌
)
ei®𝒒·

®𝒌 , (S3.7)

with the appropriate normalization constant added. The above is
simply the inverse Fourier transform of ψ̃(®𝒌). Therefore, in wave
optics it is often convenient to introduce the frequency operator

�̂� ≜
1
ℏ
�̂� , (S3.8)

and we refer to ψ̃(®𝒌) as the Fourier-conjugate of the wave function,
with ®𝒌 = 1

ℏ ®𝒑 being the wavevector, i.e. | ®𝒌 | = 𝜂 2π
𝜆 is the wavenum-

ber, where 𝜆 is the wavelength.

Uncertainty relation. Without loss of generality, assume that the
signals ψ, ψ̃ are centred (zero mean). The variances of these signals,
along a particular axis, say 𝑥 , are

𝜎2𝑞𝑥 ≜
∫

d3®𝒒𝑞2𝑥
��ψ (

®𝒒
) ��2 , (S3.9)

𝜎2𝑘𝑥 ≜
∫

d3®𝒌 𝑘2𝑥
���ψ̃(

®𝒌
)���2 . (S3.10)

Then, the Fourier relation between position and momentum, out-
lined by Eq. (S3.7), and a bit of analysis, gives rise to the important

uncertainty relation:

𝜎𝑞𝑥𝜎𝑘𝑥 ≥ 1
2
. (S3.11)

The uncertainty relation implies that the wave function and its con-
jugate cannot both be precisely localized in space.

ABCD optical systems and line-spread kernels. Let ψ(®𝒒 ; 𝑧) be
some wave function, under the paraxial approximation. Under the
special case where the Hamiltonian Ĥ is not 𝑧-dependant (i.e., lin-
ear optical systems), the solution to the evolution of the system
(Eq. (S3.5))

Û (𝑧, 𝑧0) = exp
(
−i𝑧 − 𝑧0

ℏ
Ĥ

)
, (S3.12)

can be rewritten (due to the linearity of the above) via a line-spread
function acting on the wave function, viz.

ψ(®𝒒 ; 𝑧) =
∫

d2®𝒒′ 𝑔
(
®𝒒, ®𝒒′

)
ψ(®𝒒′ ; 𝑧0) . (S3.13)

Note that time 𝑡 is replaced by 𝑧 as the system’s evolution variable,
under the paraxial setting. For Hamiltonians that admit only qua-
dratic monomials in �̂�, �̂�, it can be shown that [Torre 2005]

𝑔
(
𝑞, 𝑞′

)
=

√
−i

2πℏ𝐵
exp

[
i
1

2ℏ𝐵

(
𝐷𝑞2 +𝐴𝑞′2 − 2𝑞𝑞′

)]
, (S3.14)

where separation into dimensions is implied. It can be shown that
the conjugate ψ̃ transforms in similar manner to ψ, but the 𝑘-space
(frequency space) 𝐴𝐵𝐶𝐷 parameters relate to the 𝑞-space (position
space) via(

𝐴 𝐵
𝐶 𝐷

)
𝑘
=

(
0 1
−1 0

) (
𝐴 𝐵
𝐶 𝐷

)
𝑞

(
0 −1
1 0

)
. (S3.15)

The above is the kernel of a linear canonical transform, which
generalizes Fresnel transforms and fractional Fourier transforms.
Therefore, any diffraction problem that can be solved via Fourier
optics tools or the Huygens-Fresnel principle is, in fact, an ABCD
system. The parametrization of the ABCD variables, from the ray-
transfer matrix (Eq. (S2.11)) to the wave-optical line-spread func-
tion (Eq. (S3.14)), changes as 𝐵 ↦→ ℏ𝐵 and 𝐶 ↦→ 1

ℏ𝐶 , due to the
remapping from 𝑝-space to 𝑘-space (Eq. (S3.8)).

Summary. As we transition from ray optics to wave optics, the
position-momentum identification of a ray ®𝒖 = ®𝒒, ®𝒑 is replaced
by the optical wave function and its conjugate ψ, ψ̃ as the de-
scriptor of light. However, while under ray optics the precise and
simultaneous specification of a ray’s position and momentum is
possible, the uncertainty relation implies that in wave optics, such
a local specification is not possible. Therefore, while a ray is a lo-
cal descriptor of light, the wave function and its conjugate serve
as a global descriptor. Indeed, a (non-zero) wave function ψ or its
conjugate ψ̃ will always admit infinite support.

The dynamics of the relevant systems are governed by the ray
equation or wave equation. The special case of ABCD systems are
of special interest for us, as these include the majority of the light
transport (not accounting for interaction with materials) around a
typical scene (perfect reflections and refractions, including curved
surfaces, like lenses, and propagation in media with constant or
slowly-varying refractive-index).
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In attempt to regain a classical-like view of a wave optical sys-
tem, where position-momentum pairs can be locally sampled, we
will next introduce a wave-optical phase space. Crucially, we will
show that point-queries in that wave-optical phase space evolve in
identical fashion to their classical counterparts, under interaction
by ABCD optical systems.

S3.1 The Wigner Distribution and the Wave-Optical
Phase Space

TheWigner distribution function (WDF) [Wigner 1932] is defined as

𝒲
(
®𝒒, ®𝒌

)
≜

1

(2π)3
∫

d3®𝒒′ ψ★
(
®𝒒 − ®𝒒′

2

)
ψ

(
®𝒒 + ®𝒒′

2

)
e−i®𝒒

′ · ®𝒌

≜
1

(2π)3
∫

d3®𝒌′ ψ̃★
(
®𝒌 −

®𝒌′

2

)
ψ̃

(
®𝒌 +

®𝒌′

2

)
ei®𝒒·

®𝒌
′
, (S3.16)

with both definitions equivalent. The WDF belongs to the wider
Cohen class [Cohen 1994] of bilinear signal representations. Being
a joint representation of the wave function both in 𝑞-space and 𝑘-
space, the WDF gives rise to a wave-optical phase space. In this
subsection, we will analyze the relevant properties of theWDF, and
in-turn the wave-optical dynamics in this induced phase space. It
is possible to recover the wave function, up to a phase term, from
the WDF via an inverse transform.
When ψ is understood as a stochastic process—a statistical en-

semble of waves—then a definition of the WDF in terms of the en-
semble average is possible:

𝒲
(
®𝒒, ®𝒌

)
≜

1

(2π)3
∫

d3®𝒒′ C
(
®𝒒 − ®𝒒′

2
, ®𝒒 + ®𝒒′

2

)
e−i®𝒒

′ · ®𝒌 , (S3.17)

where C is the cross-spectral density of light: the space-frequency
formulation of optical coherence. Clearly, as theWDF and the cross-
spectral density function are Fourier pairs, they contain the same
information, and one can be recovered unequivocally from the other.
For completeness, we explicitly note the inverse transform:

C
(
®𝒒 − 1

2 ®𝒙, ®𝒒 + 1
2 ®𝒙

)
=

∫
d3®𝒌′𝒲

(
®𝒒, ®𝒌′

)
ei
®𝒌
′
®𝒙 , (S3.18)

or, equivalently, if we define ®𝒒1,2 = ®𝒒 ∓ 1
2 ®𝒙 :

C
(
®𝒒1, ®𝒒2

)
=

∫
d3®𝒌′𝒲

( ®𝒒1 + ®𝒒2
2

, ®𝒌′
)
ei
®𝒌
′ ( ®𝒒2−®𝒒1) . (S3.19)

It should be stressed that Eq. (S3.16) and Eq. (S3.17) are employed
under different contexts: the former when we deal with a deter-
ministic wave function, while the latter when the underlying field
is modelled as a stochastic process. For more information about op-
tical coherence theory, see Mandel and Wolf [1995]; Wolf [2007].

Given an arbitrary observable 𝒇 (�̂�, �̂�), its expectation value is〈
𝒇
〉
ψ =

〈
ψ
��𝒇 ��ψ〉

=
∫

d3®𝒒 ψ★
(
®𝒒
)
𝒇
(
�̂�, �̂�

)
ψ
(
®𝒒
)
. (S3.20)

It is possible to map the observable 𝒇 to its corresponding “clas-
sical” phase-space function 𝑓 (®𝒒, ®𝒌) via the Wigner-Weyl transform
[Cohen 1966]. Given such a pair, 𝒇 and 𝑓 , the expectation value of

the observable, i.e. Eq. (S3.20), can be recast as〈
𝒇
〉
ψ =

∫
d3®𝒒 d3®𝒌 𝑓

(
®𝒒, ®𝒌

)
𝒲

(
®𝒒, ®𝒌

)
, (S3.21)

which takes a similar form to the expectation of an observable w.r.t.
the classical ray density 𝜌 (Eq. (S2.13)). Note that Eq. (S3.20) is for-
mulated in terms of operators, while Eq. (S3.21) is written in terms
of c-functions, typically yielding a simpler expression that is more
amenable to analytic tools. The WDF then serves a role similar to
the classical ray density 𝜌 : it allows us to “ask wave-optical ques-
tions”, but in a manner resembling classical phase-space queries.

The properties of Wigner distribution function. The WDF fulfils
most of the postulates expected from a phase-space density func-
tion.

(I) Realness — 𝒲 ∈ R.
(II) Marginals — the position and momentum densities are

the corresponding marginals of the WDF:��ψ (
®𝒒
) ��2 = ∫

d3®𝒌𝒲
(
®𝒒, ®𝒌

)
(S3.22)���ψ̃(

®𝒌
)���2 = ∫

d3®𝒒𝒲
(
®𝒒, ®𝒌

)
. (S3.23)

(III) Unit measure — if the wave function is normalized, viz.∫
d3®𝒒 |ψ(®𝒒) | 2 = 1 then theWDF integrates to one over the entire

phase space: ∫
d3®𝒒 d3®𝒌𝒲

(
®𝒒, ®𝒌

)
= 1 . (S3.24)

The converse holds as well. In general, the WDF can be normal-
ized as

∫
d®𝒒 d®𝒌𝒲 = 0 if and only if ψ ≡ 0.

(IV) Galilei invariance — theWDF is invariant underGalilean
transformations:

ψ′
(
®𝒒
)
= ψ

(
®𝒒 + ®𝒒′

)
=⇒ 𝒲′

(
®𝒒, ®𝒌

)
= 𝒲

(
®𝒒 + ®𝒒′, ®𝒌

)
(S3.25)

ψ̃′
(
®𝒌
)
= ψ̃

(
®𝒌 + ®𝒌′

)
=⇒ 𝒲′

(
®𝒒, ®𝒌

)
= 𝒲

(
®𝒒, ®𝒌 + ®𝒌′

)
. (S3.26)

(V) Support — Given convex 𝑆𝑞, 𝑆𝑘 ⊆ R3 such that

∀®𝒒 ∉ 𝑆𝑞, ψ
(
®𝒒
)
= 0 and ∀®𝒌 ∉ 𝑆𝑘 , ψ̃

(
®𝒌
)
= 0 ,

the WDF vanishes outside these volumes as well:

𝒲
(
®𝒒, ®𝒌

)
≠ 0 only if

(
®𝒒, ®𝒌

)
∈ 𝑆𝑞×𝑆𝑘 . (S3.27)

That is, the support of the WDF in 𝑞-space and 𝑘-space is the
support of ψ and ψ̃, respectively.
(VI) Liouville transformation laws —under the paraxial ap-

proximation, given a quadratic Hamiltonian (with only quadratic
monomials in �̂�, �̂�), the WDF obeys:

𝜕

𝜕𝑧
𝒲

(
®𝒒, ®𝒌 ; 𝑧

)
= −H𝒲

(
®𝒒, ®𝒌 ; 𝑧

)
(S3.28)

d
d𝑧

𝒲
(
®𝒒, ®𝒌 ; 𝑧

)
= 0 , (S3.29)

i.e. the Liouville’s equation and Liouville theorem of Hamiltonian
mechanics, viz. Eqs. (S2.14) and (S2.15), and note thatH above is
the classical Hamiltonian of ray optics (Eq. (S2.8)). Also note that,
as before, under the paraxial setting 𝑧 replaces 𝑡 as the system
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evolution variable, and the𝑞 and𝑘-spaces are now 2-dimensional,
meaning the phase space becomes 4-dimensional.
(VII) Superposition — Given wave functions ψ1 and ψ2, the

WDF of the superposition ψ = ψ1 + ψ2 is
𝒲 = 𝒲1 +𝒲2 + 2 Re𝒲12 , (S3.30)

where𝒲12 is the cross-term:

𝒲12

(
®𝒒, ®𝒌

)
≜

1

(2π)3
∫

d3®𝒒′ ψ★1
(
®𝒒 − ®𝒒′

2

)
ψ2

(
®𝒒 + ®𝒒′

2

)
e−i®𝒒

′ · ®𝒌 .

(S3.31)

The above highlights the bilinearity of the WDF.

Moments. Important information about the underlyingwave func-
tions, and the optical beams these wave functions encode, can be
gleaned from theWDF moments. The total energy contained in the
beam is

𝐸 ≜
∫

d3®𝒒
��ψ (

®𝒒
) ��2 = ∫

d3®𝒒 d3®𝒌𝒲
(
®𝒒, ®𝒌

)
. (S3.32)

Clearly, whenwe understand theWDF strictly as a (quasi-)probability
density function, then we only consider 𝐸 = 1. First-order moments
(mean) are (

�̄�
�̄�

)
≜

1
𝐸

∫
d3®𝒒 d3®𝒌

(®𝒒
®𝒌

)
𝒲

(
®𝒒, ®𝒌

)
. (S3.33)

Second-ordermoments give information about the gyration of beam
energy about themean, in position and frequency spaces.The second-
order moments are grouped into the real, symmetric moments ma-
trix of the WDF:

𝑴 ≜
©«
𝑚𝑥𝑥 𝑚𝑥𝑦 𝑚𝑥𝑧 𝑚𝑥�̃� 𝑚𝑥�̃� 𝑚𝑥𝑧

𝑚𝑦𝑥 𝑚𝑦𝑦 𝑚𝑦𝑧 𝑚𝑦�̃� 𝑚𝑦�̃� 𝑚𝑦𝑧

· · · · · ·
𝑚𝑧𝑥 𝑚𝑧𝑦 𝑚𝑧𝑧 𝑚𝑧�̃� 𝑚𝑧�̃� 𝑚𝑧𝑧

ª®®®¬
≜

1
𝐸

∫
d3®𝒒 d3®𝒌

[(®𝒒
®𝒌

)
−

(
�̄�
�̄�

)] [(®𝒒
®𝒌

)
−

(
�̄�
�̄�

)]⊺
𝒲

(
®𝒒, ®𝒌

)
, (S3.34)

where subscripts of the matrix elements𝑚𝜉𝜁 are unaccented or ac-
cented with a tilde to indicate 𝑞-space or 𝑘-space axes, respectively.
The second-order moments on the main diagonal of 𝑴 provide in-
formation about the width of the beam in phase space, i.e. both in
position and frequency spaces. Our interest lies primarily in these
main diagonal moments. Mixed moments are used in the optical lit-
erature to characterize beam twist, curvature as well as beam qual-
ity. Furthermore, mixed moments quantify the longitudinal compo-
nents of the orbital angular momentum.

Transformation of the WDF. The properties above suggest that
the WDF can, to a degree, be understood as the classical phase-
space density function 𝜌 . A point-query of the wave-optical phase
space, viz.𝒲(®𝒒, ®𝒌), then can be understood as a “ray”, and we write
𝒲(®𝒖), with ®𝒖 = ®𝒒, ®𝒌 resembling its ray optical analogue (i.e.
Eq. (S2.4)). Property (VI) then implies that the WDF transforms in
a manner similar to a classical ray under interaction with an ABCD
optical system:

𝒲(®𝒖 ; 𝑧) = 𝒲
(
T −1®𝒖 ; 𝑧0

)
, (S3.35)

where the matrix T is the appropriate ABCD ray-transfer matrix
(Eq. (S2.11)), though note that it should be transformed to 𝑞-𝑘 rep-
resentation of the phase space, from the 𝑞-𝑝 representation of the
ray optical phase space, as discussed in Section S3.

Eq. (S3.35) means that a point-query ®𝒖 in the wave-optical phase
space (a “ray”) transforms just as its ray-optical analogue, under
quadratic Hamiltonian wave optics. Of particular interest is the fact
that the WDF moments matrix (Eq. (S3.34)) also transforms via the
ray-transfer matrix, as:

𝑴 (𝑧) = T 𝑴 (𝑧0)T
⊺
, (S3.36)

on interaction with an ABCD optical systems.

The negativity of the WDF. One postulate of a probability density
function not fulfilled by the WDF is non-negativity. The WDF may
take negative values, a consequence of the uncertainty relation:The
quantization process employed to promote the symplectic ray op-
tics to metaplectic wave optics serves to quantize phase space into
cells (the volume of which is dictated by the uncertainty relation,
Eq. (S3.11)). These cells are not discrete cells with “sharp” bound-
aries, but overlap and interact with each other, therefore points
within a phase-space cell do not constitutemutually-exclusive prob-
ability events (violating the 𝜎-additivity of a probability measure),
hence the WDF is only a quasi-probabilistic density function.

It can be shown that anisotropic Gaussian Schell-model (AGSM)
beams are the only class of wave functions that admit non-negative
Wigner distribution functions. Furthermore, AGSM beams have the
most compact support in phase space (occupy the least phase space
volume) relative to any other wave function.Thus, a Gaussian beam
can be understood as an elementary construct that is the closest
analogue of the classical ray: serving as a form of a “generalized
ray” with non-singular extent in position and momentum spaces.
It should be noted that a superposition of a pair of AGSM beams
does not, in general, yield a non-negative WDF: the bilinearity of
the WDF gives rise to cross-terms on superposition (Property (VII)
above), and it is these interference terms that are the source of neg-
ative values.

See Bastiaans [1978]; Testorf et al. [2010]; Zhang and Levoy [2009]
for additional discussion and applications of the WDF in optics.

S4 Wave-Optics Light Transport
The wave-optical phase space that arises via the Wigner distribu-
tion function admits attractive properties: it facilitates performing
phase-space queries in a manner similar to classical ray optics, and
these “rays” transform inline with Liouville’s equations for ABCD
optical systems. However, the WDF is not non-negative, frustrat-
ing its interpretation as an energy density. Furthermore, the WDF
tends to be highly oscillatory: a consequence of the Fourier-like
relation in the definition of the WDF (Eq. (S3.16)). As an example,
consider a sample signal𝛷 , and its WDF 𝒲𝛷 , and let a wave func-
tion be composed of two spatially- and frequency-shifted copies of
this signal:

ψ
(
®𝒒
)
= 𝛷

(
®𝒒 − ®𝒒1

)
ei
®𝒌1 · ®𝒒 +𝛷

(
®𝒒 − ®𝒒2

)
ei
®𝒌2 · ®𝒒 , (S4.1)

where ®𝒒1,2 and ®𝒌1,2 are the spatial and frequency shifts, respectively.
Using the shift properties of the WDF (Property (IV)), the WDF of
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the wave function above is trivially:

𝒲
(
®𝒒, ®𝒌

)
=𝒲𝛷

(
®𝒒 − ®𝒒1, ®𝒌 − ®𝒌1

)
+𝒲𝛷

(
®𝒒 − ®𝒒2, ®𝒌 − ®𝒌2

)
+ 2 Re

[
e
i
(
®𝒌1−®𝒌2

)
· ®𝒒−i( ®𝒒1−®𝒒2) · ®𝒌

′ ]
𝒲𝛷

(
®𝒒′, ®𝒌′

)
, (S4.2)

with the shorthands ®𝒒′ = ®𝒒− 1
2 (®𝒒1+®𝒒2) and ®𝒌

′
= ®𝒌− 1

2 (®𝒌1+®𝒌2). Note
the complex exponent in the cross-term above: it is a heavily oscilla-
tory term at optical frequencies (𝑘 � 0), with frequencies that grow
greater as the separation in phase space between the two𝛷 signals
increases. Hence, if light is composed of multiple partially-coherent
components, as these propagate and their separation increases, the
WDF becomes increasingly oscillatory.

The WDF as a “generalized radiance”. As a brief aside, we note
that the WDF was used to derive wave-optical radiometric quanti-
ties, in particular the radiance, first by Walther [1968]. Other defi-
nitions of such generalized radiances have been proposed, usually
using other Cohen class joint space-frequency representations. A
generalized radiance—in the form of the WDF—was also used in
computer graphics to propagate partially-coherent fields.
However, it was shown that no such generalized radiance fulfils

all the expected postulates: for example, it is not non-negative, or
isn’t conserved on non-paraxial propagation, or it is not a faithful
representation of the signal (e.g., Property (II) does not hold). In
general, such representations serve only as quasi-probability distri-
butions. Furthermore, being “wasteful” representations (they are
of double the dimensionality of the represented signal), in practical
applications only a restricted parametrized class of functions are
used. But under this constraint, there is no value to using the WDF
as opposed to the cross-spectral density of light directly (which
then is parameterized by the Fourier-conjugated class of functions).
Whichever representation of light we chose to use, once we de-
cide to quantify partially-coherent fields explicitly, we always suf-
fer from the “sampling problem” (see Steinberg et al. [2022] and
Section 1 in the paper), where backward path tracing is difficult, as
importance sampling light-matter interactions require information
about the coherence of light.
Instead of using the WDF as a descriptor of light, we are inter-

ested in the phase space that arises via the WDF. We would like
to find a wave-optical analogue of the classical ray, formally dis-
cuss when the wave-optical phase space can adequately sampled
via such “rays”, and analyze the dynamics of these “rays”. These
rays facilitate a coherent-mode decomposition of light, allowing us
to reason about the partially-coherent light that is of primary inter-
est for us in rendering in a “classical” manner.

S4.1 Gaussian Beams as Rays
The Husimi Q representation. To combat the unattractive cross-

terms that arise in the WDF on superposition of waves, the WDF
can be convolved in phase spacewith a kernel function (aCohen ker-
nel), masking out the interference terms and producing a different
representation. It can be shown that a convolution with a multivari-
ate Gaussian, with position and frequency variances satisfying the
uncertainty relation (Eq. (S3.11)), produces a representation that is
strictly non-negative. The resulting distribution is known as the

Husimi Q distribution:

𝒬
(
®𝒒, ®𝒌

)
≜

1

π3

∫
d3®𝒒′ d3®𝒌′𝒲

(
®𝒒′, ®𝒌′

)
e−

1
2 ®𝒖

′⊺ΣΣΣ−1 ®𝒖′
, (S4.3)

with ®𝒖′ ≜
(®𝒒 − ®𝒒′
®𝒌 − ®𝒌′

)
and

√
|ΣΣΣ| = 1

23
,

where ΣΣΣ is any positive-definite covariance matrix of the Gaussian
low-pass filter that fulfils the above.

A wave-optical “ray”. Consider the WDF that takes the form of a
Dirac delta in phase space, viz.𝒲r = 𝛿3 (®𝒒 − ®𝒒0) 𝛿3 (®𝒌 − ®𝒌0), which
is an aphysical construct that represents an idealised “ray” at posi-
tion ®𝒒0 with momentum ®𝒑0 = ℏ®𝒌0. We stress that such a WDF is
fictitious: it cannot arise from any physically-realizable wave func-
tion. However, its corresponding Husimi Q representation 𝒬r , that
arises from 𝒲r via Eq. (S4.3), is physical. Let the covariance take
the block-diagonal form ΣΣΣ = diag{ΣΣΣ𝑞,ΣΣΣ𝑘 }, then:

𝒬r

(
®𝒒, ®𝒌 ; 𝑡0

)
=

1

π3
e−

1
2 ®𝒒

′⊺ΣΣΣ−1𝑞 ®𝒒′− 1
2
®𝒌
′⊺
ΣΣΣ−1𝑘

®𝒌
′
, (S4.4)

which represent the phase space “picture” of the ray at an initial
time 𝑡0 of the system evolution. The shorthands ®𝒒′ = ®𝒒 − ®𝒒0 and
®𝒌′ = ®𝒌 − ®𝒌0 are the shifted coordinates. Clearly, this system is fully
defined by its first 2 moments: the mean �̄� (𝑡0) = ®𝒒0, ®𝒌0, and the
moment matrix (Eq. (S3.34))𝑴 (𝑡0) = ΣΣΣ. The time evolution follows
Eq. (S3.36):

�̄� (𝑡) = T
(
𝑡, 𝑡 ′

)
�̄� (𝑡 ′) , and (S4.5)

𝑴 (𝑡) = T
(
𝑡, 𝑡 ′

)
𝑴 (𝑡 ′)T

(
𝑡, 𝑡 ′

)⊺
, (S4.6)

for 𝑡 ≥ 𝑡 ′. For example, on propagation in amediumwith a constant
refractive-index 𝜂, viz.

Tpropagation
(
𝑡, 𝑡 ′

)
=

(
1 𝑡−𝑡 ′

𝜂 ℏ𝑐
0 1

)
, (S4.7)

(elements represent 3× 3matrices) which represents a phase space
horizontal shear, with 𝑐 being the speed of light. Hence, the evolu-
tion effectively constitutes propagating the centre-of-mass in phase
space (mean) in direction ®𝒌0 and spreading the spatial Gaussian
footprint w.r.t. the variance in frequency.

Substitute the “smoothedWDF”𝒬r of an idealised ray (Eq. (S4.4))
into the definition of the WDF (Eq. (S3.16)) and invert the trans-
form:

ψr
(
®𝒒 ; 𝑡0

)
=

1

ψ★r
(
®𝒒0 ; 𝑡0

) ∫
d3®𝒌′𝒬r

( ®𝒒 + ®𝒒0
2

, ®𝒌′ ; 𝑡0
)
ei
®𝒌
′
·( ®𝒒−®𝒒0)

=

√
23 |ΣΣΣ𝑘 |
π3

e−i®𝒌0 · ®𝒒′

ψ★r
(
®𝒒0 ; 𝑡0

) e− 1
8 ®𝒒

′⊺ΣΣΣ−1𝑞 ®𝒒′− 1
2
®𝒌
′⊺
ΣΣΣ𝑘 ®𝒌

′
. (S4.8)

The value of the wave function at ®𝒒0 is (up to a constant phase
factor) computed via the respective marginal (Property (II) in Sec-
tion S3.1):��ψr

(
®𝒒0 ; 𝑡0

) ��2 =∫
d3®𝒌′𝒬r

(
®𝒒0, ®𝒌

′
; 𝑡0

)
=

√
23 |ΣΣΣ𝑘 |
π3

. (S4.9)
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Plugging the above into Eq. (S4.8) yields the wave function that is
the closest analogue to the Dirac delta in phase space, i.e. a gener-
alized ray:

ψr
(
®𝒒 ; �̄�

)
=

(
23 |ΣΣΣ𝑘 |
π3

) 1/4
ei𝜑e−i

®𝒌0 · ®𝒒′
e
− 1

8 ®𝒒
′⊺

(
ΣΣΣ−1𝑞 +4ΣΣΣ𝑘

)
®𝒒′
, (S4.10)

where we slightly abuse notation and make the mean �̄� = ®𝒒0, ®𝒌0
at current time 𝑡 explicit, with shifted position shorthand ®𝒒′ =
®𝒒 − ®𝒒0, as before, and 𝜑 ∈ R being an arbitrary initial phase. The
evolution of that wave function to 𝑡 ≥ 𝑡0 is dictated by Eqs. (S4.5)
and (S4.6). The above should be understood as the wave function
that corresponds to the ray ®𝒖 = �̄�. Being a Gaussian beam, ψr is
indeed a subclass of AGSM beams, and it has the most compact
support possible in phase space, as discussed.

Coherent-modes phase-space decomposition. It is well-known that
an arbitrary function in 𝐿1 can be approximated arbitrary well by
a finite sum of shifted Gaussians with identical variance (an im-
mediate consequence of the Wiener’s Tauberian theorem). In other
words, multivariate Gaussians serve as an overcomplete functional
basis. Therefore, the Husimi Q representation 𝒬 of an arbitrary
WDF can be written as

𝒬 =
∞∑
𝑗=1

𝐸 𝑗 𝒬r

����
�̄� 𝑗 ,𝑴

, (S4.11)

i.e. a superposition of the Husimi Q representations of generalized
rays, all with the same moment matrix 𝑴 but shifted via different
means �̄� 𝑗 . The moment matrix must fulfil the Husimi Q condition
|𝑴 | = 1

23 , but otherwise is chosen at will, we may set𝑴 (𝑡0) = 1√
2
𝑰

initially, for simplicity. 𝐸 𝑗 > 0 are the energies contained in each
generalized ray. Positive energies are only possible because 𝒬 is
always non-negative.

S4.2 Optical coherence
It is insightful to study how partially-coherent field effects arise un-
der our formulation. Let C be the cross-spectral density of light, and
𝒲 its corresponding WDF. The 3 × 3 spatial-coherence covariance
matrix—termed the shape matrix—around a spatial point ®𝒒 can be
written as:

ΘΘΘ
(
®𝒒
)
=

1

C
(
®𝒒, ®𝒒

) ∫
d3®𝒒′ ®𝒒′®𝒒′⊺ C

(
®𝒒 − 1

2
®𝒒′, ®𝒒 + 1

2
®𝒒′

)
=

1��ψ (
®𝒒
) ��2 ∫

d3®𝒒′ ®𝒒′®𝒒′⊺
∫

d3®𝒌′𝒲
(
®𝒒, ®𝒌′

)
ei®𝒒

′ · ®𝒌
′
. (S4.12)

Formally-interchange the orders of integration, and note that∫
d3®𝒒′ ®𝒒′®𝒒′⊺ei®𝒒

′ · ®𝒌
′
= −(2π)3 𝜕2

𝜕®𝒌′2
𝛿3

(
®𝒌′

)
, (S4.13)

i.e., the Hessian matrix of the Dirac delta. Then, for “well-behaved”
𝒲:

ΘΘΘ
(
®𝒒
)
= − (2π)3��ψ (

®𝒒
) ��2 ∫

d3®𝒌′𝒲
(
®𝒒, ®𝒌′

) 𝜕2

𝜕®𝒌′2
𝛿3

(
®𝒌′

)
= − (2π)3��ψ (

®𝒒
) ��2 [

𝜕2

𝜕®𝒌′2
𝒲

(
®𝒒, ®𝒌′

)]
®𝒌
′
=0
, (S4.14)

that is, the Hessian (w.r.t. the frequency variable) of the WDF, eval-
uated at ®𝒒 and ®𝒌 = 0.

As mentioned, the cross-spectral density function and the WDF
contain the same information (being Fourier-transform pairs), how-
ever we have shown that spatial-coherence is dictated by the be-
haviour of the WDF in frequency-space only, furthermore, for Gauss-
ian signals the covariance of spatial coherence around a point ®𝒒 is
proportional to the inverse of covariance of angular spread of light
at ®𝒒.

S5 Analysis of Generalized Rays
In Section 4 we have derived our primary contributions: the theory
of backward wave-optical light transport with generalized rays.We
now analyse and validate these results.

Linearity. All formulations in the paper are linear: (i) Sourcing
equations, Eqs. (16) and (17), describe a linear (incoherent) superpo-
sition of the measured intensities of each detector element; (ii) the
rendering equation, Eq. (23), is linear; and, (iii) measurement of
a generalized ray, i.e. integration over the sourcing distribution
(Eq. (24)), as well as accumulation of these intensities are also linear
operations. Generalized rays always carry positive intensities. We
discuss the linearity of generalized ray further, from the perspec-
tive of Shannon sampling, in Section S5.1.

Locality. We need to show that all integrals in our formulae can
be restricted to a well-defined finite integration region. A general-
ized ray is a sharply-peaked Gaussian, thus in practice we ignore
its tails and assume that 𝜓𝛽,𝜌 (®𝒓) = 0 when |®𝒓 − ®𝒓0 | > 𝜚 , for some
𝜚 > 0. Clearly, this can be done to arbitrary precision: the tail mass
of𝜓𝛽,𝜌 decays rapidly as a function of 𝜚 . Therefore, all integrations
are over the support of a generalized ray: in the sourcing (Eqs. (16)
and (18)), measurement (Eq. (24)), and interaction operator acting
upon a generalized ray (Eq. (11)), viz. K -t{𝑔}, formulae are confined
to the (finite) spatial extent of𝜓𝛽,𝜌 .

We will now show that we may always restrict the integration
that defines an arbitrary interaction kernel 𝐾 -t to a finite region.
Consider the action of that kernel (Eq. (11)) on a generalized ray 𝑔:

𝒲 ≜K -t
{
𝑔𝛽,𝜌

(
®𝒓 ′, ®𝒌′ ; ®𝒓0, ®𝒌0

)}
=
∫

d®𝒓 ′ d®𝒌′ 𝐾 -t
(
®𝒓, ®𝒓 ′, ®𝒌, ®𝒌′

)
𝑔𝛽,𝜌

(
®𝒓 ′, ®𝒌′ ; ®𝒓0, ®𝒌0

)
. (S5.1)

Substitute the definition of the kernel (Eq. (2)) and rewrite the gen-
eralized ray 𝑔 using the definition of the WDF (Eq. (4)) via its wave
function 𝜓𝛽,𝜌 (Eq. (15)). With some basic algebra and proper vari-
able changes the above becomes

𝒲 =
∫

d®𝒚′ d®𝒚′′ d®𝒙𝑜𝜓★𝛽,𝜌
(
®𝒚′

)
ℎ
(
®𝒚′, ®𝒓 + 1

2 ®𝒙𝑜
)

×𝜓𝛽,𝜌
(
®𝒚′′

)
ℎ★

(
®𝒚′′, ®𝒓 − 1

2 ®𝒙𝑜
)
e−i

®𝒌 · ®𝒙𝑜 . (S5.2)

That is, the system’s optical response function ℎ(®𝒓𝑜 , ®𝒓𝑖 ) only con-
tributes to the result𝒲when𝜓𝛽,𝜌 (®𝒓𝑜 ) is non-negligible. Apply the
relation ℎ(®𝒓𝑜 , ®𝒓𝑖 ) = ℎ★(®𝒓𝑖 , ®𝒓𝑜 ) to Eq. (S5.2), and we also deduce that
ℎ(®𝒓𝑜 , ®𝒓𝑖 ) only contributes when 𝜓𝛽,𝜌 (®𝒓𝑖 ) is non-negligible. Hence,
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Fig. S2. Rendering of the spaceship (Fig. 1 in the paper) with Werner et al. [2017]. Difference insets are with respect to our method.

we may always replace the optical response function ℎ with

ℎ̄(®𝒓𝑜 , ®𝒓𝑖 ) ≜
{
ℎ(®𝒓𝑜 , ®𝒓𝑖 ) if |®𝒓𝑜 | < 𝜚 and |®𝒓𝑖 | < 𝜚
0 otherwise

(S5.3)

in the definition of a diffraction kernel (Eq. (2)), thereby limiting the
integration to the spatial extent 𝜚 of the incident generalized ray,
while remaining accurate to arbitrarily good precision. We have
shown that our formalism achieves weak-locality.
Compare the above with related work: If we were to replace the

generalized rays with plane waves, viz.𝜓𝛽,𝜌 ∝ exp(−i®𝒌 · ®𝒓), locality
would no longer be recoverable as the integration in Eq. (S5.2) must
happen over the entire domain. Similarly, consider a Wigner-based
perfectly-local formalism (for example Cuypers et al. [2012]) where
we set 𝑔 = 𝛿 (®𝒓 − ®𝒓0) 𝛿 (®𝒌 − ®𝒌0). Then, Eq. (S5.1) becomes 𝒲 = 𝐾 -t,
and the integration region in the definition of 𝐾 (Eq. (2)) can no
longer be constrained (without sacrificing linearity).

Completeness. Given a photoelectric detector, whose detectable
states (its WDF) can be written as Eq. (8), our derivations in Sec-
tion 4 are exact. We stress that essentially all detectors of interest
work via the process of photoelectric detection [Leonhardt 1997,
Chapters 3 and 4]. Arbitrary detector geometry and detection prop-
erties, quantified by D, are supported. Interactions of the WDF
with the scene via a diffraction kernel 𝐾 , as in Eqs. (1) and (2), is
a general formalism [Testorf et al. 2010], and no restrictions are
placed on the total interaction operator K -t. Likewise, the sourcing
distribution𝒲𝑠 can be arbitrary.
Because (multivariate) Gaussians serve as an overcomplete func-

tional basis, an arbitrary Husimi Q distribution can be written as a

finite superposition of Gaussians to arbitrarily good precision. We
discuss this further in our supplemental material. Therefore, the
recursive light transport process, formalised by Eq. (23), is well de-
fined. The restriction of a generalized ray, as well as the definition
of the interaction kernel (Eq. (2)), to a finite spatial region can also
be done to an arbitrarily good precision. Therefore, our formalism
is complete: able to reproduce any wave-optical effect observable
by a photoelectric detector.

S5.1 Linearity of Generalized Rays
Consider Young’s iconic double-slit interferometer (illustrated in
Fig. S5a), and assume we use a coherent laser source. This experi-
ment will be used to (i) lend insight into how generalized rays are
always able to maintain linearity, even when the incident illumina-
tion is perfectly coherent; and, (ii) numerically validate our formal-
ism (see Section S5.2). In addition, while our practical interactive
rendering algorithm that we introduce in the paper (Section 5.1)
neglects free-space diffractions, this experiment demonstrates that
our formalism may reproduce such effects.

As the coherent light passes through the slits, it diffracts around
the slits, resulting in a (coherent) superposition phasor 𝜑 at the
screen. However, we do not observe 𝜑 at singular points, but only
over regions, “pixels”, on the screen (blue line on the screen in
Fig. S5a). The spatial extent of these pixels must be positive, due
to the uncertainty relation [Mandel and Wolf 1995]: we are never
able to resolve light at infinite resolution. Because interference is
averaged out over the spatial extent of a pixel, oscillations of 𝜑 that
are more rapid than the pixel’s extent do not contribute to observ-
able interference effects.
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Fig. S3. Locality in wave optics II. Long-wavelength radiation impinges upon a conductive screen. The incident beam’s extent is illustrated via red dashed
lines, and the screen is marked with a dotted green outline. At the centre of the screen we cut out a complex aperture (visualized in the bottom left). Light
diffracts through that aperture, giving rise to a diffraction pattern on the right wall. We visualize the colour-coded irradiance (in decibels) impinging upon
scene surfaces. The screen is placed 1300𝜆 from the right wall, and the right wall’s edge length is 2000𝜆. The free-space diffraction BSDF is computed via the
method by Steinberg et al. [2024]. We render the scene with (b) a constant BSDF integration path radius 𝑟 , and compare with (a) our method. Accurately
localizing light is imperative: when 𝑟 is too small highly incorrect results are produced; on the other hand, when 𝑟 is too big (i) BSDF integration becomes
unnecessary expensive, and (ii) the sampling problem arises (see Fig. S4 for BSDF lobe visualizations). Generalized rays quantify the optimal integration
patch, dynamically throughout the scene. All images are rendered at 1170 × 700 resolution with 64 samples per pixel.
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Fig. S4. Log-scale plots of free-space diffraction BSDF slices (see Fig. S3).
Observe the sampling problem: there is a marked difference in the BSDF for
𝑟 = 25𝜆 and 𝑟 = 100𝜆, even though there is little difference in the observed
optical response (diffraction patterns appear almost the same).

Let points ®𝒔1,2 located on the slits act as point sources (i.e., the
Huygens–Fresnel principle). Given identical peak amplitudes, their
superposition phasor at a point ®𝒓 on the screen can be written as

𝜑 ≈ e−i𝑘𝑧
𝑧

[
exp

(
−i𝑘𝑧 ®𝒔⊥1 · ®𝒓⊥

)
+ exp

(
−i𝑘𝑧 ®𝒔⊥2 · ®𝒓⊥

)]
, (S5.4)

where 𝑘 is the wavenumber, as before, the superscript ⊥ denotes
projection upon the plate plane (𝑧 = 0), and we made the typical

Fraunhofer (far-field) approximation [Born and Wolf 1999] (note,
we only make this approximation for the illustrative analysis here,
the results in Figs. S5b and S6 were obtained using exact formulae).
The observed intensity of this phasor is then proportional to

|𝜑 |2 ∝ 2
𝑧2

(
1 + cos

[
𝑘
𝑧

(
®𝒔⊥1 − ®𝒔⊥2

)
· ®𝒓⊥

] )
. (S5.5)

The interference term above oscillates with an angular frequency
of 𝑘 𝑙𝑠𝑧 (as a function of screen position ®𝒓⊥), where 𝑙𝑠 = |®𝒔⊥1 − ®𝒔⊥2 | is
the distance between the points on the slits.

We now make contact with sampling theory: By the Shannon
sampling theorem, we may resolve that interference term without
aliasing, only if we observe the phasor over a spatial extent (i.e.,
a pixel) no greater than 1

2𝑘 (𝑙𝑠/𝑧 ) . Under the setting of our small-
angle approximation, 𝑙𝑠/𝑧 approximates the angle between ®𝒔1, ®𝒔2
subtended from ®𝒓 , denoted 𝜃𝑠 . Denote the spatial extent of a pixel as
𝑙𝑟 ,and we establish the sampling relation: 𝑙𝑟 (𝑘𝜃𝑠 ) ≤ 1/2.This relation
resembles the uncertainty relation [Mandel andWolf 1995, Chapter
4] but with the inequality reversed (𝑙𝑟 is the spatial variance and𝑘𝜃𝑠
is the angular variance scaled by the wavenumber).

When the angular extent𝜃𝑠 between the interference sources ®𝒔1,2
is large enough to violate the sampling relation above, i.e. 𝑙𝑟 (𝑘𝜃𝑠 ) >
1/2, the observer is no longer able to resolve the interference term.
Generalized rays at the detector (𝜌 = 0) are minimum-uncertainty
constructs, i.e. fulfil the equality in the sampling relation.Therefore,
generalized rays quantify exactly the spatial and angular extent
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Fig. S5. Diffraction through double slits. (a) Schematic of Young’s dou-
ble slit experiment. A pair of slits, of width 𝑏 and spaced a distance 𝑑 apart,
are cut in a thin, conductive plate. A coherent plane wave (illustrated in
green) diffracts through the slits, and is observed upon a screen, placed at
a distance 𝑧 from the plate. The superposition of coherent light from both
slits results in a rapidly-oscillating phasor 𝜑 (illustrated in red), producing
an interference pattern. (b) The experiment is performed with increasing
slit distances 𝑑 , and we compare our method (sampling incident light with
generalized rays) with a ground truth (explicitly diffracting the plane wave
through the slits). Differences are plotted in the insets at the bottom right
of each pattern; also see Fig. S6. The experiment was performed with wave-
length 𝜆 = 1 (arbitrary units), 𝑧 = 10000𝜆 and 𝑏 = 40𝜆.

over which interference effects may be resolved. The arguments
above are not limited to double-slit diffraction, and apply, in gen-
eral, to any superposition from two or more point sources. To con-
clude: it is the integration over the observer’s spatial extent that in-
duces decoherence, allowing generalized rays to regain linearity un-
der any illumination conditions.
We illustrate that decoherence in Fig. S5b, where we perform the

experiment with increasing slit distances.The standard deviation of
the spatial extent of a generalized ray (illustrated with dashed cyan
lines in Fig. S5a) at the slits is about 100𝜆, i.e. a full width at half max-
imum of ∼235𝜆. While the characteristic double-slit interference
pattern is visible at first (when 𝑑 is smaller than the spatial extent
of a generalized ray), it slowly dissolves into a pair of (mutually-
incoherent) single-slit diffraction patterns. Observe the increasing
frequency of the secondary fringes in Fig. S5b with increasing 𝑑 .

S5.2 Numeric Validation
We perform the described double-slit experiment using a pair of
methods: (i) forward transport, where we diffract the incident plane
wave directly via the exact Rayleigh-Sommerfeld (RS) explicit diffrac-
tion integral of the first kind [Mandel and Wolf 1995, Chapter 3.2],
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Fig. S6. Plots of light intensity as a function of 𝑥 (position on screen) of the
experiment in Fig. S5. In red we plot the exact Rayleigh-Sommerfeld (RS)
diffraction, i.e. the unobservable interference that arises in singular points.
The spatial extent of a detector on the screen (a pixel in each pattern in
Fig. S5b) is illustrated as a cyan bar. Integrating the RS diffraction over
that spatial extent of a pixel computes the numeric ground truth, plotted
in dashed green. Results obtained with generalized rays are plotted in blue;
absolute error with respect to the ground truth is plotted in dotted black.
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Fig. S7. Loss of locality with Cuypers et al. [2012]. Red plot (exact RS
diffraction) is as in Fig. S6. Let 𝜌wbsdf be the radius of integration of a diffrac-
tion kernel (Eq. (2)) in Cuypers et al. [2012]. Limiting that integration radius
produces erroneous results, hence locality is entirely lost with their method:
correctness requires integration over the entire scene (𝜌wbsdf = ∞).

and integrate over the detector (each pixel); and (ii) backward trans-
port using our formalism, i.e. sampling with generalized rays and
diffracting them through the slits over their spatial extent. The ab-
solute difference between the two methods is shown in the inset at
the bottom right of each pattern in Fig. S5b. The differences (due to
ignoring generalized rays’ tail) are negligible.

Once the distance 𝑑 becomes larger than the spatial extent of a
generalized ray that reaches the slits, generalized rays no longer
solve a double-slit diffraction problem. Indeed, they don’t need to:
interference between the two slits does arise at singular points, but
is not observable over a pixel’s extent. This can be seen in Fig. S6,
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where for large 𝑑 we can see that the rapidly-oscillating double-slit
interference pattern arises everywhere, but is integrated out over
the spatial extent of a pixel. In contrast to generalized rays, explicit
diffraction integrals (first method above) have no means of quanti-
fying the extent over which observable interference may arise.This
means that the explicit method needs to (wastefully) integrate each
sample over each pixel and over the entire plate. Therefore, our
method (second method) is an order-of-magnitude faster than the
explicit method (8.9 s compared to 246 s). This experiment demon-
strates that generalized rays achieve well-defined weak locality.
Other methods suffer from similar deficiencies: they fail to de-

rive machinery that is able to quantify the extent over which weak-
locality can be maintained. For example, Cuypers et al. [2012] de-
scribe aWDF-based formalismwith perfectly local primitives. How-
ever, as discussed in Section 2, such a formalism forgoes either lo-
cality or linearity: formulating a light-matter interaction requires
integration over the entire scene, as defined by the interaction ker-
nel (Eq. (2)). In Fig. S7 we show that if we were to limit the spatial
extent of integration of an interaction kernel, while insisting on
linearity (ignore the bilinear superposition term in Eq. (3)), incor-
rect results are produced. Indeed, no wave-optical formalism may
be simultaneously perfectly local and linear.

S6 Interaction Kernels
Developing a light-matter interaction operator entails deriving an
analytic method to compute the diffracted distribution 𝒬𝑜 which
arises from the interaction operator acting on an arbitrary gener-
alized ray, and express it as a finite sum of generalized rays, viz.
Eq. (22). Formally, this can always be done with arbitrarily high
accuracy (as discussed in Section 3). However, doing so in prac-
tice can be analytically involved, and at times application-specific
assumptions are made in order to simplify the analysis. Often, an
importance sampling strategy, that is used to sample a generalized
ray out of the sum in Eq. (22), is desired. In this Section we present
a few important example interactions.
Because time-reversal is equivalent to wavevector reversal and

phase conjugation [Geru 2018, Chapter 2.3], we may rewrite the
action of an arbitrary time-reversed interaction operator on a gen-
eralized ray (that enters the rendering equation Eq. (23)) as

K -t
{
𝑔𝛽,𝜌

(
®𝒓 ′, ®𝒌′ ; ®𝒓0, ®𝒌0

)}
=K

{
𝑔𝛽,𝜌

(
®𝒓 ′, ®𝒌′ ; ®𝒓0,−®𝒌0

)}
(S6.1)

(recall that theWDF is real). Instead of deriving time-reversed inter-
actions, we only need to reverse the generalized ray’s wavevector.

We classify light-matter interactions into two types:

(1) Simple —These arise with linear optical systems (also known
as “ABCD systems”): propagation through a homogeneous
medium with a slowly-varying refractive index (including
free space), and reflection or refraction at a smooth interface.
Under simple interactions the dynamics are identical to ray-
optical dynamics (see our supplemental material).

(2) DiffRactive — All other interactions, e.g., scattering by a
rough surface: there are many ways to formalise a diffractive
interaction, and we will discuss a few examples.

Generalized rays are unique in simultaneously (i) behaving like
classical rays under simple interactions; (ii) and beingWigner-repre-
sentable [Torre 2005], i.e. they admit well-defined wave functions.
The first point only holds for constructs that are fully defined by
their 2nd-order moments matrix (like a generalized ray, which is
a Gaussian beam), while the second point only applies to phase-
space constructs that fulfil the uncertainty relation. For example,
the second point does not hold for perfectly-local Wigner-based
formalisms (the WDF 𝒲 ≡ 𝛿 (®𝒓) 𝛿 (®𝒌) admits no wave function).

Free-space propagation (simple interaction). Let a generalized ray
be parameterized by its mean spatial position ®𝒓0, mean wavevector
®𝒌0, and 𝛽, 𝜌 , as before. Using its phase-space representation (Eq. (5)),
observe that we may express its spatial and wavevector variances
as 𝜎2𝑟 = 𝛽2/2, and 𝜎2

𝑘
= (1 + 𝜌2)/(2𝛽2), respectively. 𝜎𝑟 quantifies

the spatial extent occupied by the generalized ray, and 𝜎𝑘/𝑘0 the
solid angle into which the generalized ray propagates.

Let 𝑧 > 0 be the distance of propagation, and 𝑧 = 𝑧/|®𝒌0 | the dis-
tance normalized by the mean wavevector. Then, the correspond-
ing kernel (Eq. (2)) is

𝐾 fRee
space

(
®𝒓, ®𝒓 ′, ®𝒌, ®𝒌′

)
≜ 𝛿

(
®𝒌′ − ®𝒌

)
𝛿

(
®𝒓 ′ + 𝑧®𝒌 − ®𝒓

)
, (S6.2)

i.e. propagation in direction ®𝒌 . Applying Eq. (11), the diffracted
(propagated) distribution after interaction becomes

𝒬𝑜

(
®𝒓, ®𝒌

)
=K fReespace

{
𝑔𝛽,𝜌

(
®𝒓 ′, ®𝒌

′
; ®𝒓0, ®𝒌0

)}
= 𝑔𝛽𝑜 ,𝜌𝑜

(
®𝒓, ®𝒌 ; ®𝒓0 + 𝑧 ®𝒌0, ®𝒌0

)
(S6.3)

with 𝛽2𝑜 = 𝛽2 + 𝑧
(
2𝜌 + 2𝑧 1+𝜌2

2𝛽2

)
and 𝜌2𝑜 =

(
𝜌 + 2𝑧 1+𝜌2

2𝛽2

)2
.

The reader may verify that after propagation ®𝒌0, 𝜎2𝑘 remain invari-
ant, i.e. the direction and solid angle into which the generalized ray
propagates do not change; and, the spatial variance transforms as
𝜎2𝑟 → 𝜎2𝑟 + O(𝑧2𝜎2

𝑘
), i.e. the space occupied by the generalized ray

increases proportionally to the propagation distance times the solid
angle. Finally, the mean position ®𝒓0 is shifted by 𝑧. That is, all the
generalized ray’s parameters transform under classical ray-optical
dynamics, as would be expected with free-space propagation.

Reflection/refraction at an interface (simple interaction). Assume
a smooth, flat interface. Let K be the interaction operator, quanti-
fying the action of reflection or refraction at that interface. Let ®𝒌
be the mean wavevector of the incident generalized ray, and we
denote ®𝒌

(r)
0 as that wavevector after the reflection (by the law of re-

flection) or refraction (by Snell’s law) at the interface. Let 𝑎 be the
Fresnel coefficient for the interaction. Then,

𝒬𝑜

(
®𝒓, ®𝒌

)
=K ReflectRefRact

{
𝑔𝛽,𝜌

(
®𝒓 ′, ®𝒌

′
; ®𝒓0, ®𝒌0

)}
= 𝑎𝑔𝛽,𝜌

(
®𝒓, ®𝒌 ; ®𝒓0, ®𝒌

(r)
0

)
. (S6.4)

Theparameters ®𝒓0, 𝛽, 𝜌 are unchanged as no propagation takes place.
That is, with generalized rays this interaction (and other simple
interactions) mimics the classical dynamics. Reflection and refrac-
tion are polarization-dependent phenomena. Vectorization can be
done trivially (generalized ray per each polarization component).
We handle polarization differently, see Section 5.1.

Diffraction grating (diffractive interaction). A benefit of general-
ized rays is that they admit a well-defined wave function, 𝜓𝛽,𝜌 .
Hence, to formulate a diffractive interaction onemaywork in phase
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diffusivity

generalized ray

ray bundle

(a) collimated light
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(b) diffuse light

weakly coherent

Fig. S8. Relation to optical coherence. A ray bundle is a collection of
generalized rays. The optical coherence of that bundle is inversely propor-
tional to the angular spread of generalized rays in the bundle. That is, (a)
collimated light, where the rays propagated roughly in the same direction,
is highly coherent; on the other hand, (b) a ray bundle, in which the rays
have a large spread of propagation direction, is weakly coherent. The mean
direction of propagation ®𝒛 of the bundle, as well as its diffusivity—variance
of angular spread of generalized rays—are illustrated.

space with WDFs, or in position space with wave functions (via a
diffraction integral, electromagnetic theory, etc.). Furthermore, the
generalized ray’s wave function is a simple (coherent) Gaussian
beam, which has been extensively studied in optical literature.
Apply the Fraunhofer diffraction integral [Born and Wolf 1999]

to a one-dimensional sinusoidal grating of period Λ and height ℎ,
yielding

𝒬𝑜

(
®𝒓, ®𝒌

)
=KgRtn

{
𝑔𝛽,𝜌

(
®𝒓 ′, ®𝒌

′
; ®𝒓0, ®𝒌0

)}
≈
∑

𝑗
𝑎 𝑗𝑔𝛽,𝜌

(
®𝒓, ®𝒌 ; ®𝒓0, ®𝒌

( 𝑗 )
0

)
,

(S6.5)

where 𝑎 𝑗 = J𝑗 (ℎ𝑘/2)2 is the intensity of the 𝑗-order diffracted lobe,
J𝑗 is the Bessel function of 1st kind and ®𝒌 ( 𝑗 )

0 is the diffractedwavevec-
tor in direction sin𝜃𝑜 = sin𝜃𝑖 − 𝑗 𝜆Λ , where 𝜃𝑖,𝑜 are the incident
and diffraction directions w.r.t. the grating direction and 𝜆 is the
wavelength. The diffraction grating also very slightly enlarges the
correlation constant 𝜌 , but we ignore that effect for simplicity.

Scatter by moderately-rough surface (diffractive interaction). We
make a simplifying assumption: ignore the beam curvature of a
generalized ray, viz. 𝜓𝛽,𝜌 ≡ ei

®𝒌0 · (®𝒓−®𝒓0 )e−
1

2𝛽2 | ®𝒓−®𝒓0 |
2
. This serves

to transform the Gaussian beam into a spatially-modulated plane
wave, easing the analysis. We then may apply the Harvey-Shack
surface scatter theory [Krywonos 2006]:

𝒬𝑜

(
®𝒓, ®𝒌

)
=KsuRface

{
𝑔𝛽,𝜌

(
®𝒓 ′, ®𝒌

′
; ®𝒓0, ®𝒌0

)}
≈

∫
d®𝒌

(r)
0 𝑓HS

(
®𝒌0 → ®𝒌

(r)
0

)
𝑔𝛽,𝜌

(
®𝒓, ®𝒌 ; ®𝒓0, ®𝒌

(r)
0

)
, (S6.6)

where 𝑓HS is the Harvey-Shack BRDF, quantifying the scattering
for incident and diffracted wavevectors ®𝒌0 and ®𝒌(r)0 , respectively. In
practice, sampling generalized rays from the distribution𝒬𝑜 is done
via Monte-Carlo integrating the expression above, thereby rewrit-
ing it in the form of Eq. (22):

𝒬𝑜

(
®𝒓, ®𝒌

)
≈ 1
𝐽

𝐽∑
𝑗

𝑓HS
(
®𝒌0→�̄�

(r)
0, 𝑗

)
𝑝 𝑗

𝑔𝛽,𝜌

(
®𝒓 , ®𝒌 ; ®𝒓0, �̄�(r)0, 𝑗

)
(S6.7)
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Fig. S9. Sample-solve. Our path tracing algorithm (a) uses generalized
rays (dotted lines) to sample paths through the scene. Generalized rays
are always linear, therefore classical sampling techniques apply essentially
unchanged. Once a path is sampled (solid red path), we (b) solve for the
partially-coherent light transport, by applying PLT [Steinberg et al. 2022]
from the light source to the sensor across all intermediate interactions.

(up to a normalization constant), where �̄�(r)0, 𝑗 are the set of 𝐽 sam-
pled mean scattering directions, and 𝑝 𝑗 are the sampling probabili-
ties. In our implementation, the Harvey-Shack BRDF 𝑓HS is impor-
tance sampled using the technique described by Holzschuch and
Pacanowski [2017].

In Eqs. (S6.5) and (S6.6) we make optical approximations that
are reasonable for our target application: rendering at optical fre-
quencies. One consequence of using the (approximative) Harvey-
Shack model for surfaces is that we only model the averaged scat-
ter, where every generalized ray interacts with the entire distribu-
tion of surface frequencies. Therefore, surface imperfections, such
as glints, or optical speckle, do not arise. We stress that the as-
sumptions we made here are not a limitation of our light trans-
port formalism. Also note that, in general, K may describe cross-
wavelength scattering, e.g., due to fluorescence or phosphorescence,
however we ignore such effects in our implementation.

Other materials that we use in our rendered scenes are also de-
rived under the assumption that we ignore the curvature of a gen-
eralized ray. Their interaction formula then echoes Eq. (S6.6), but
with the BRDF 𝑓HS replaced with the BRDF of the relevant interac-
tion that acts on plane waves.

S7 Sample-Solve
In this Subsection we draw a formal connection between our back-
ward (sensor-to-source) formalism to optical coherence. The pur-
pose of this is to connect our formalism to other forward-based
models and computational optics tools, thereby enabling the appli-
cation of bi-directional techniques. For our application of interest,
we will show that we may use a forward PLT pass as a cheap vari-
ance reduction technique.

Relation to optical coherence. The central quantity in the study of
optical coherence [Wolf 2007] is the cross-spectral density (CSD) of
a statistical ensemble of light waves, viz.

C (®𝒓1, ®𝒓2) ≜
〈
𝜓 (®𝒓1)𝜓★(®𝒓2)

〉
, (S7.1)

where 〈·〉 denotes ensemble-averaging over thewave ensemble, and
the wave function 𝜓 is now understood as a realization from that
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Fig. S10. Sample-solve: PLT as a variance reduction technique. During the solve step, we apply PLT to solve for the partially-coherent light transport
over a sampled light path. (a) Light arrives from the right, illuminating a simple scene. A screen (on the right, red outline) shadows a rectangular area. On
the left a pair of thin diffraction gratings (yellow outline) reflect and disperse light. (b) When the incident light is highly collimated (subtends a very small
solid angle from the scene), hence is moderately coherent, the diffraction lobes are clearly visible. (c) As we increase the light’s diffusivity (increase its solid
angle), the reflection from the direct contribution lobe spreads out, while diffraction lobes mostly disappear, as expected. As the only light that arrives to
the shadowed region is from the diffraction gratings, this is a good scene to study the benefits of the solve stage, and to do so we render the scene with
only fully-coherent transport (no PLT applied). (b-c, insets) Difference images between the partially-coherent and fully-coherent sample-solve show that
indeed both converge to an identical result. (d) However, close ups on the region outlined in orange in (c) show that, while the diffraction lobes are no longer
visible, they still induce error, which the partially-coherent solve stage serves to reduce. (e) Plot of error in that area as function of sample count suggests
that fully-coherent transport requires about 2-5 times the sample count to achieve similar-quality renderings.

ensemble. From the definitions of the WDF and the CSD, Eqs. (2)
and (S7.1), it is easy to observe that the CSD is the Fourier transform
of the ensemble-averaged WDF, therefore we may write

C
(
®𝒓 − 1

2
®𝒅, ®𝒓 + 1

2
®𝒅
)
∝

〈
ℱ

{
𝒲(®𝒓, ®𝒌′)

} (
®𝒅
)〉

(S7.2)

(up to an irrelevant constant), where the Fourier transform ℱ is
w.r.t. the primed variable, ®𝒌′. We may immediately conclude that
optical coherence at a fixed point ®𝒓 only depends on the (ensemble-
averaged) light’s wavevector distribution in phase space.
Under partial coherence, the observed values are often ensemble-

averaged values [Wolf 2007] (and can be understood as time aver-
aging over the period of detection), i.e. 〈𝐼 〉. Then, partial coherence
is trivially accounted for by replacing the sourcing WDF 𝒲𝑠 with
its ensemble-averaged counterpart, 〈𝒲𝑠 〉, in all our formulae. 〈𝒲𝑠 〉
is the Fourier transform of the sourced CSD of light (Eq. (S7.2)).
We term the diffusivity ΩΩΩ of a WDF to be the angular variance of

propagation from the mean direction of propagation. The diffusiv-
ity ΩΩΩ is a 2 × 2 positive-definite matrix ΩΩΩ, allowing for anisotropy.
For example, in the isotropic case, the diffusivity can be written
as 𝜎2

𝑘
/𝑘20 , where 𝜎

2
𝑘
is the distribution’s wavevector variance. The

variance in the solid angle into which the bundle propagates is then
𝛺 = |ΩΩΩ | . Then, from Eq. (S7.2) we may formally derive the follow-
ing result (see Section S4.2 in our supplemental material):

ΘΘΘ = 𝜆2ΩΩΩ−1 , (S7.3)

whereΘΘΘ is the shape matrix from PLT theory [Steinberg et al. 2022],
i.e. the (inverse) 2nd-order moments of spatial variance. Deriving
equality relations between higher-order moments is also possible,
however we do not require higher-order moments.
A consequence of the above relation between optical coherence

and the diffusivity of light is the well-known connection between
the coherence area of light, i.e. |ΘΘΘ| , and the solid angle subtended
by a thermal source [Mandel and Wolf 1995]: |ΘΘΘ| = 𝜆2

𝛺 . Though
note that the relation Eq. (S7.3) is more general, and establishes a

direct connection between optical coherence and light’s distribu-
tion in the wave-optical phase space, with no assumptions on the
light sourcing process or its state-of-coherence at other regions in
space.

Sample-solve. We present a simple two pass algorithm: first, we
sample the wave-optical distribution of light using generalized rays,
using the rendering algorithm we presented in the paper, Algo-
rithm 1.The process continues until a generalized ray encounters a
light source, thereby a path 𝝅 that connects the detector to a light
source is found. The effective diffusivity over that path is well de-
fined. In-place of the measurement stage (line 9 in Algorithm 1),
we now apply a forward pass: we use PLT machinery [Steinberg
et al. 2022] to solve for the partially-coherent light transport over
the path 𝝅 . More formally, instead of integrating over the ensemble-
averaged sourcing WDF, 〈𝒲𝑠 〉, we use PLT to source a partially-
coherent beam that corresponds to 〈𝒲𝑠 〉 from that light source, and
retrace the steps forward (source-to-sensor) taken by the general-
ized ray over the path. As the PLT beam captures more informa-
tion (it is “wider” than a generalized ray), this forward solve pass
serves as a variance-reduction technique, by computing the partially-
coherent optical response for the sampled path. See Fig. S10.

In our domain of interest—wave-optical rendering—applying PLT
makes sense: The optical coherence of light is a primary factor in
limiting our ability to resolve wave-interference effects. Other ap-
plications might find a different solve pass to be more appropriate:
For example, integrating optical speckle statistics can be done via
a sample-solve approach, where first we sample paths connecting
the detector to a light source, and then integrate statistics in a solve
pass. Such applications are beyond the scope of this paper, however
they serve to highlight the generality of this simple sample-solve
approach: it bridges a gap between classical path tracing tools and
wave optics, via the generalized ray construct, and enables the ap-
plication of powerful sampling techniques in a wider context.
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