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Fig. 1. A scene rendered with our framework, viewed through a polarization filter (e.g., sunglasses), and lit by sunlight and the afternoon sky. Multiple
diffraction optical effects are visible: (a) the glass window and (b) moulded plastic spoke guard admit stress birefringence, which results in iridescence
depending on viewing direction (see Fig. 8b for a close-up rendering); and (c) the metal brake surfaces on the bicycle’s wheels act as imperfect diffraction
gratings, dispersing scattered light (see Figs. 8 and 9 for photos and additional renderings of these effects). Unlike the state-of-the-art which still depends
on classical materials for performance, all the materials in this scene are coherence-aware, physical optics materials (see Subsection 4.1), nevertheless, our
rendering performance is close to classical radiometric renderers. The appearance of these materials depends on the radiometric, polarimetric, and coherence
properties of light, see Fig. 10 for renderings under different lighting conditions.

Physical light transport (PLT) algorithms can represent the wave nature of
light globally in a scene, and are consistent with Maxwell’s theory of elec-
tromagnetism. As such, they are able to reproduce the wave-interference
and diffraction effects of real physical optics. However, the recent works
that have proposed PLT are too expensive to apply to real-world scenes
with complex geometry and materials. To address this problem, we propose
a novel framework for physical light transport based on several key ideas
that actually makes PLT practical for complex scenes. First, we restrict the
spatial coherence shape of light to an anisotropic Gaussian and justify this
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restriction with general arguments based on entropy.This restriction serves
to simplify the rest of the derivations, without practical loss of generality.
To describe partially-coherent light, we present new rendering primitives
that generalize the radiometric radiance and irradiance, and are based on
the well-known Stokes parameters. We are able to represent light of arbi-
trary spectral content and states of polarization, and with any coherence
volume and anisotropy. We also present the wave BSDF to accurately ren-
der diffractions and wave-interference effects. Furthermore, we present an
approach to importance sample this wave BSDF to facilitate bi-directional
path tracing, which has been previously impossible. We show good agree-
ment with state-of-the-art methods, but unlike them we are able to render
complex scenes where all the materials are new, coherence-aware physi-
cal optics materials, and with performance approaching that of “classical”
rendering methods.

CCS Concepts: • Computing methodologies → Rendering; Computer
graphics; • Applied computing → Physics.
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1 INTRODUCTION
Modern rendering techniques strive to convincingly reproduce a
wide range of optical phenomena. However, rendering effects that
stem from the wave nature of light remains an open problem. Such
effects include diffraction-grating dispersion by compact discs, holo-
graphs and LCD screens; iridescence effects in coated or painted
materials; and, pleochroism and birefringent effects inmoulded plas-
tics and framed glass. Contemporary renderingmethodologies have
mostly either ignored thewave nature of light entirely, or have only
considered wave effects locally. But, the process of wave interfer-
ence, and the visual effects that arise, is driven by the light’s optical
coherence: the statistical properties of light that dictate its ability to
interfere and diffract. These properties change as light propagates
through a scene and interacts with matter, and cannot be guessed
or approximated locally with an ad hoc approach. Essentially, classi-
cal “physically-based” rendering approaches have basically ignored
these effects by assuming that light in typical scenes is perfectly in-
coherent. However, no light is truly incoherent [Goodman 2015],
and so all light we encounter in real-world scenes is at least par-
tially coherent. In order to accurately reproduce the diffractive phe-
nomena that emerge from such light, the coherence properties of
light must be considered.

Physical light transport (PLT), introduced by Steinberg and Yan
[2021a], is a formulation of light transport that is consistent with
electromagnetism. By accounting for the coherence properties of
light globally—throughout the scene—PLT facilitates accurate ren-
dering of observable wave-interference effects. PLT borrows upon
optical coherence theory [Wolf 2007], and models light as a statisti-
cal ensemble of waves and quantifies the correlations between the
wavefronts that arise as an optical beam propagates and interacts
with media.This approach gives rise to generalized, physical-optics
rendering primitives, and Steinberg and Yan [2021a] showed that
these new primitives superpose linearly under rather general con-
ditions, and derived generalized linear rendering equations.

This linearity is crucial, as it implies that these primitives can
indeed generalize and supersede the classical radiometric quanti-
ties that are used in traditional “physically-based” rendering algo-
rithms, with a caveat: Helmholtz reciprocity no longer applies un-
der physical optics (since diffraction is not reciprocal, see Steinberg
and Yan [2021a, supplemental Appendix B]). Furthermore, the pro-
cess of scattering of light by matter depends on the wave ensem-
ble’s statistics—i.e., the light’s optical coherence—and, in general,
this information is only available when emitting light from a light
source and tracing its propagation. Therefore, path tracing under
PLT has so far been restricted to source-to-eye (forward) tracing
only, which is very slow to converge. Additional difficulties hinder
the practical application of PLT: (i) The new rendering primitives

are now covariance functions, in contrast to simple numeric val-
ues; (ii) The modelling of scattering of light by matter abandons the
classical radiometric treatment, and is now modelled as a more an-
alytically-involved diffraction problem. These issues make the rep-
resentation of the properties of both light and matter cumbersome,
and frustrate practical, efficient formulation of the light-matter in-
teraction process.

In this paper, we propose a way to overcome these difficulties
and present a complete, practical framework for PLT. After a brief
review of the theory of PLT in Subsections 3.1 and 3.2, we first in-
troduce, in Subsection 3.3, a form of the generalized Stokes parame-
ters as the generalized radiance that serves as our rendering primi-
tive. This formalism extends the well-known Stokes-Mueller calcu-
lus [Pérez and Ossikovski 2016], which has been used in computer
graphics for polarization-aware radiometric rendering [Jarabo and
Arellano 2017]. The generalized radiance fully quantifies the radio-
metric, polarimetric, and wave (i.e. coherence) properties of light,
and we show that all these properties work in unison to reproduce
realistic appearance and optical phenomena.

To enable simple numeric representation in a renderer, we re-
strict the (spatial) coherence shape of light to that of an anisotropic
Gaussian, which is a reasonable approximation because light from
natural (spontaneous emission) light sources admits a coherence
shape well approximated by an anisotropic Gaussian [Steinberg
and Yan 2021b]. Furthermore, in Subsection 3.4, we present fun-
damental arguments based on thermodynamics that show that the
passive optical elements we want to render actually scatter light
such that the light’s coherence shape remains Gaussian. Then, in
Subsection 3.5 we discuss scattering of light by matter. We will
show that the familiar polarimetric BSDF (i.e. a classical Mueller
matrix) as well as the matter’s power spectral density (PSD) are
sufficient to accurately describe a matter’s scattering characteris-
tics. We also discuss importance sampling, even when the light’s
coherence properties are unknown.

In Section 4 we build upon these theoretical contributions and
present an efficient rendering algorithm for physical light trans-
port. Our renderer leverages bi-directional path transport to render
complex scenes, achieving performance that far exceeds the state-
of-the-art in PLT, and approaches the speed of classical “physically-
based” rendering systems. Furthermore, unlike previouswork [Stein-
berg and Yan 2021a,b], all thematerialswe render are new coherence-
aware materials that we develop in Subsection 4.1.

2 RELATED WORK
Physical-optics light transport. The theoretical foundations of phys-

ical light transport (PLT) are presented by Steinberg and Yan [2021a]:
Recognising the fact that single-point statistical descriptions of light,
like the classical radiometric radiance (which is a time-averaged
value), are insufficient to derive a formalism that is consistent with
electromagnetism and physical optics [Wolf 2007], they introduce a
rendering theorywhere the second-order statistics of a collection of
waves that compose a beamof light—awave ensemble—supplant the
classical radiance as the core quantity of interest. Subsequent work
[Steinberg and Yan 2021b] discusses a computationally-tractable
representation of the functions that quantify these second-order
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statistics as well as a practical, flexible representation of matter.
Their discussion is limited to the scalar (non polarization-aware)
case. Our work builds directly upon these theoretical foundations,
and focuses on deriving a practical PLT framework that is able to
render complex scenes, with modern coherence-aware materials,
and without relying on classical tools.

Cuypers et al. [2012]; Oh et al. [2010] have also attempted to in-
troduce physical optics to light transport. They model light using
the Wigner-Ville Spectrum (WVD) in a bid to replace the classical
radiance with a more physical variant. The WVD is essentially the
Fourier transform pair of the cross-spectral density (CSD), and the
disadvantages compared to PLT have been discussed by Steinberg
and Yan [2021a]: The WVD was envisioned [Walther 1968] as a
form of a generalized radiance that accounts for the coherence of
light, but remains constant on free space propagation. However, it
is not non-negative (for the difficulty of satisfying all of the physi-
cal requirements of classical radiance, see Friberg [1979]), meaning
that it may not act as a power density. It is also a more analytically-
complicated construct than the CSD, making the derivation of light-
matter interaction formulae more cumbersome.

Asymptotic, physical optics solvers. Between the geometric op-
tics (GO) approximation—prevalent in computer graphics—and full
electromagnetism (EM), a large family of asymptotic, physical op-
tics (PO) formalisms have been studied in applied optics literature.
These methods aim to balance between the cost prohibitiveness
of full-EM wave solvers and the inaccuracy of GO ray tracers. Of
the most actively researched are the “shooting-bouncing ray” (SBR)
family of methods. These operate by solving a PO light-matter in-
teraction problem at a surface or medium, then transition to the
far field and propagate light via simply GO ray tracing. The state-
of-the-art SBR methods include the study of EM scatter of stealth
aircraft [Bilal et al. 2019]; simulation of ground-penetrating radar
[Warren et al. 2016]; simulation of assistive-driving radars [Castro
et al. 2019]; analysis of WiFi antenna characteristics [Chen et al.
2019]; and, radar imaging [Feng and Guo 2021].

These hybrid GO/PO methods are fast (due to GO ray tracing),
and apply best when the GO ray tracing is used to quantify multi-
ple scattering effects (e.g., scattering cross-section analysis). How-
ever, they arewholly inadequate for the purposes of physical-optics
light transport: The intensity of a light beam, that is quantified by
the GO step, is time-averaged data (field fluctuations are neglected),
which discards all waveform information and statistical correla-
tions between spectral and transverse field components. This sta-
tistical information—the optical coherence of light—cannot be re-
covered from a GO treatment, needs to be propagated, and plays
a central role in the appearance of materials. The framework pre-
sented in this paper acts as a global asymptotic-PO solver, but we
do not relegate to a GO treatment, instead, we treat light as an en-
semble of waves throughout and propagate coherence information
globally.

Wave-optics rendering. The problem of reproducing the appear-
ance of different wave-interference effects has given rise to a wide
body of work. We start with work that considers the limited opti-
cal coherence of light. Levin et al. [2013] use a box kernel to ap-
proximate the spatial area over which light remains coherent, for

the purpose of synthesis of spatially-varying BRDFs. Gaussian ker-
nels have also been used: to render diffractive scattering effects
produced by surfaces with explicit microgeometry [Falster et al.
2020; Yan et al. 2018]; and, diffractive scratches [Werner et al. 2017].
Gaussian coherence kernels and the Jones calculus have been used
to measure diffraction patterns of holographic surfaces [Toisoul
et al. 2018]. Such work does not aim to transport coherence infor-
mation throughout a scene, and only considers local effects.

Other work aims to solve a full electrodynamics problem while
ignoring optical coherence. Precomputing solutions to Maxwell’s
equations in very simple scenes using the finite-difference time-
domain (FDTD) method is employed as an alternative rendering
method [Musbach et al. 2013]. These precomputation are local, ma-
terial specific, and do not address the problem of transporting the
coherence properties of light through the scene. Auzinger et al.
[2018] adapt FDTD for the nanofabrication of materials with struc-
tural (pigment-free) colours. Using such numeric solvers for render-
ing is extremely constrained: in practice, they are limited to data
with up to tens of thousands of FDTD cells, and work on determin-
istic data. 3D FDTD has been performed, but only in exceedingly
simple settings (e.g, Mann and Rastogi [2020]). Describing matter
deterministically, at a sub-wavelength resolution, is neither feasible
nor even desirable: It is the statistics of the a surface’s or medium’s
scattering characteristics that induce its appearance and optical re-
sponse. This difficulty is greatly exacerbated by the partial coher-
ence of light, which requires performing FDTD and superposing
the solutions for many independent radiators (typically thousands
of samples).

Additional work tackles reproduction of material appearance via
different simplified formalism. This includes the rendering of thin-
film interference [Belcour and Barla 2017; Kneiphof et al. 2019];
birefringent dielectrics [Steinberg 2019; Weidlich andWilkie 2008];
iridescent, and pearlescent materials [Guillén et al. 2020]; scratches
[Velinov et al. 2018] and soap bubbles [Huang et al. 2020]. Toisoul
andGhosh [2017] formulate amethod for the synthesis of diffraction-
aware BSDFs. Moravec [1981]; Stam [1999] are among the first to
consider diffractions in rendering.

Also of relevance is work that employs surface scatter theories
in computer graphics [Holzschuch and Pacanowski 2017; Steinberg
and Yan 2022; Yan et al. 2018]. Such theories make use of the power
spectral density (PSD) of a surface in order to approximate the first-
order diffraction that arises on scattering. We will show that the
PSD plays a central role in accurately and efficiently formulating
physical-optics scattering with partially-coherent light.

Vectorised, polarimetric light transport. The Jones calculus and
the closely-related Mueller calculus have seen usage in computer
graphics for different polarization-aware rendering methodologies.
Jarabo and Arellano [2017]; Weidlich and Wilkie [2008]; Wilkie
et al. [2001] discuss vectorised light transport and rendering, in-
cluding bi-directional path tracing. A Jones calculus-based numeric
method to solve for the vectorized transport through inhomoge-
neous birefringent media is presented by Steinberg [2020]. Differ-
ent forms and models of the pBSDF (polarimetric BSDF ) are pro-
posed [Duncan et al. 2003; Lei et al. 2012; Priest and Gerner 2000].
The pBSDF, in the form of a a Mueller matrix, is later introduced to
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computer graphics by Baek et al. [2020] for polarimetric (polarization-
aware) rendering and image-based acquisition of pBSDFs, and the
importance sampling of such Mueller matrix pBSDFs is discussed
by Mojzík et al. [2016]. Our light transport framework builds di-
rectly upon an extended form of the Stokes-Mueller calculus, and
we also employ the classical pBSDF to formulate light-matter inter-
actions.

3 THEORY OF PHYSICAL LIGHT TRANSPORT
In this section, we discuss the theory of physical light transport.
Subsections 3.1 and 3.2 serve as a succinct overview of the back-
ground on physical light transport as necessary for this paper. For
a more extensive discussion of the theoretical underpinning of PLT,
please refer to Steinberg and Yan [2021a]. See Fig. 2 for a broad
overview of how light is transported under PLT. Our contributions
begin in Subsection 3.3.

3.1 Preliminaries
First, we briefly introduce our notation and the mathematical tools
used throughout this paper, see Table 1 for a list of commonly used
symbols. The field of real numbers is denoted as R and the com-
plex plane as C. The Cartesian 𝑛-dimensional vector space is R𝑛

and the vector notation convention is as follows: Arbitrary vectors
are accented with an arrow, viz. ®𝒓 ∈ R𝑛 . A vector’s magnitude is
written as the scalar sharing the same letter, 𝑟 = |®𝒓 | , and the cir-
cumflexed vector 𝒓 is the respective unit vector, i.e. 𝒓 = 1

𝑟 ®𝒓 . The
Cartesian components of ®𝒓 are written as 𝑟0, 𝑟1, . . . , 𝑟𝑛−1, or poten-
tially as 𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 when ®𝒓 ∈ R3.

The vector spaces of 𝑛 ×𝑚 real and complex matrices areR𝑛×𝑚

and C𝑛×𝑚 , respectively. A square matrix 𝑨 ∈ C𝑛×𝑛 is said to be
positive-definite, written as𝑨 � 0, if it is Hermitian,𝑨 = 𝑨† (where
the dagger denotes the conjugate transpose), and ®𝒛†𝑨®𝒛 > 0 for all
non-zero ®𝒛 ∈ C𝑛 . We denote the unique, positive-definite square
root of a positive-definite matrix 𝑨 ∈ C𝑛×𝑛 as 𝑨1/2, and 𝑨 is real if
and only if 𝑨1/2 is real. 𝑰 denotes the identity matrix.

Given a real, positive-definite matrix ΣΣΣ ∈ R𝑛×𝑛 , the (unnormal-
ized) anisotropic Gaussian function is defined as

gΣΣΣ (®𝒓) ≜ e−
1
2 ®𝒓
⊺
ΣΣΣ−1®𝒓 . (1)

The 𝑛-dimensional multivariate Dirac delta arises naturally at the
limit: 𝛿 (®𝒓) ≜ lim𝜎→0+

1
𝜎𝑛 g (𝜎2𝑰 ) (®𝒓).

Functional analysis. The Fourier transform operator, with unitary
angular-frequency kernels, is denoted asℱ and its inverse asℱ−1.
Given 𝑓 : R3 → C, an 𝐿2 function, its Fourier transform is

ℱ
{
𝑓
} (®𝜻 ) ≜ (

1
2π

) 3
2
∫
R3

d3®𝒓 𝑓 (®𝒓)e−i®𝒓 ·®𝜻 . (2)

The Fourier transform operator defines the convolution operator
via the well-known convolution theorem:

𝑓 ∗ ℎ ≜ℱ−1{ℱ {
𝑓
}
ℱ

{
ℎ
}}

. (3)

Reference frames and the Mueller-Stokes calculus. We write a ref-
erence frame as [𝝁] = (�̂�, �̂�, �̂�), which is an ordered tuple of or-
thonormal vectors that define the local coordinate frame. At times,
wewill need orthogonal change-of-basismatrices, denoted as𝑸 [𝝁] ∈

R3×3, that transform from the global coordinate system to a local
reference frame [𝝁].

The well-known classical Mueller-Stokes calculus [Pérez and Os-
sikovski 2016] is a formal method where the polarimetric state of
light is represented via 4-dimensional, real Stokes parameters vec-
tors, and the action of an optical element on light is quantified via
aR4×4 Mueller matrix acting upon these Stokes vector. This calcu-
lus is sensitive to the reference frame at which the Stokes vectors
are defined. Therefore, we denote a Stokes vector as ®𝑺 [𝝁]—explicitly
indicating the reference frame—and a Mueller matrix as 𝑴 [𝝁𝑖]→[𝝁𝑜] .
This Mueller matrix expects a Stokes parameter vector defined in
frame [𝝁𝑖], and after acting upon the Stokes vector it transforms it
to frame [𝝁𝑜]. See Appendix D for more information on how Stokes
vector are rotated between frames.

We also denote the common unpolarized, linear-horizontal and
linear-vertical polarization states (in arbitrary reference frame), as

Table 1. List of symbols and notation (with location of definition)

NOTATION AND SYMBOLS
Notation
®𝒓 Vectors: arrow accented boldface letters
𝑟 = | ®𝒓 | Vector’s magnitude: scalars sharing the same letter as the vector
�̂� = ®𝒓/𝑟 Unit vector: hat accented boldface, also sharing letter with a vector
𝑨 Matrices: boldface, capital letters
ℳ Operators: capital latin letters in script typeface

OpeRatoRs
ℱ

{
·
}

Fourier transform operator [Eq. (2)]
∗ Convolution operator [Eq. (3)]
𝑧★ Complex conjugate of 𝑧 ∈ C
𝑨
⊺ , 𝑨† Transpose and conjugate transpose of 𝑨

〈·〉𝜔 Ensemble-average over same-frequency constituents [Page 5]

Symbols
𝛿 (®𝒓 ) Multivariate Dirac delta
gΣΣΣ Anisotropic Gaussian functions with covariance ΣΣΣ � 0 [Eq. (1)]
𝑸 [𝝁] Orthogonal change-of-basis matrix from global coordinates to local

reference frame [𝝁]

PRopeRties of light
®𝑬 Electric field [Page 5]
𝑐 The speed of light
®𝒌 Wavevector [Page 5]
𝑘 = | ®𝒌 | Wavenumber [Page 5]
𝜆 = 2π

𝑘 Wavelength [Page 5]
𝜔 = 𝑐𝑘 Wave’s angular frequency [Page 5]
C𝛼𝛽 Cross-transverse spectral density (CSD) function [Eq. (7)]
𝑆 , 𝐿 Classical, scalar irradiance and radiance
®𝑺 , ®𝑳 Classical irradiance- and radiance-carrying Stokes parameters vec-

tors
S
↔

[𝝁] , L
↔

[𝝁] Generalized irradiance and radiance [Eq. (8) and Definition 3.1]
𝚯 Spatial coherence shape matrix [Definition 3.1]

PRopeRties of matteR
p Stationary power spectral density (PSD) [Definition 3.3.(i)]
𝑴 [𝝁𝑖]→[𝝁𝑜] Polarimetric BSDF (pBSDF) [Definition 3.3.(ii)]
W Wave BSDF (wBSDF) operator [Eq. (16)]
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well as the shorthand ®𝑺c describing the cross-transverse states:

®𝑺0 ≜


1
0
0
0

 , ®𝑺LHP ≜


1
1
0
0

 , ®𝑺LVP ≜


1
−1
0
0

 , ®𝑺c (𝜒, 𝜍) ≜


0
0
𝜒
𝜍

 , (4)

where the arguments 𝜒, 𝜍 are real numbers that play the roles of
the signed degree-of-diagonal polarization and the signed degree-of-
circular polarization, respectively.

3.2 Background: Wave Ensembles and Beams
Theprimary goal of this subsection is to derive the fundamental ren-
dering primitive—the wave packet—in a qualitative fashion directly
from classical electromagnetism. We begin with a brief discussion
about the electromagnetic nature of light.

Let ®𝑬 ( ®𝒑, 𝑡) denote the electric field throughout spacetime (non-
relativistic). Any physically-realizable field can be spectrally de-
composed, by writing it as a superposition of monochromatic plane
waves [Zangwill 2013]:

®𝑬
(
®𝒑, 𝑡

)
=

(
1
2π

) 3
2
∫
R3

d3®𝒌 ®𝒂⊥
(
®𝒌
)
e
i
(
®𝒌 ·®𝒑−𝑐𝑘𝑡

)
, (5)

where 𝑘 = | ®𝒌 | and 𝑐 is the speed of light. ®𝒂⊥ (®𝒌) is a vector-valued
function that quantifies the vector amplitude (amplitude and direc-
tion of oscillation) of a plane wave, and must fulfil ®𝒂⊥ (®𝒌) · ®𝒌 = 0.
The above is simply a spatial inverse Fourier transform of the quan-
tity ®𝛙(®𝒌, 𝑡) = ®𝒂⊥ (®𝒌)e−i𝜔𝑡 . The function ®𝛙 is a field of plane waves,
where each plane wave propagates in the direction of the wavevec-
tor ®𝒌 and with a peak (time-independent) amplitude ®𝒂⊥ (®𝒌), angular
frequency 𝜔 = 𝑐𝑘 and wavelength 𝜆 = 2π

𝑘 .
Consider a light source illuminating a scene and giving rise to

light that propagates to a position ®𝒑. The light source can be re-
garded as a collection of point sources, each radiating a plane wave
®𝛙(®𝒌, 𝑡) in direction of ®𝒑 (the wavevector ®𝒌 points from the respec-
tive point source towards ®𝒑 and its magnitude defines the wave-
length, i.e. | ®𝒌 | = 𝑘 = 2π

𝜆 ). The electric field of the light that arrives
at ®𝒑 is then the superposition of all these plane waves, as described
by Eq. (5). Non coherence-aware renderers aiming to reproduce
wave effects might Monte Carlo integrate Eq. (5) directly—thereby
sample the statistics of the stochastic process ®𝑬—by drawing many
points on the source. However, the high-frequency complex expo-
nent in Eq. (5) frustrates this process, leading to wave-ensemble
aliasing, see Steinberg and Yan [2021b].

Wave packets. Let that light source be now enclosed in an imag-
inary unit sphere (much larger than the source). Consider a small
continuous surface Δ𝑆 on that sphere, subtending a solid angle of
Ω from the centre of the sphere.The spectral flux radiating into that
solid angle is the electromagnetic power of wavelength 𝜆 that flows
through Δ𝑆 (up to a constant):

Φ ≜
∮
Δ𝑆

d2�̂�
��� ®𝛙(𝑘�̂�)���2 . (6)

Note that the wavenumber𝑘 above is kept constant, andwe only in-
tegrate over the directions �̂� ∈ Δ𝑆 . Hence, the above integrates the

power of all plane waves ®𝛙(®𝒌), restricted to wavenumber 𝑘 and di-
rections �̂� that pass through Δ𝑆 . We omit time as |e−i𝜔𝑡 | = 1. The
collection { ®𝛙(𝑘�̂�)}�̂�∈Δ𝑆 of all these monochromatic plane waves
is termed a wave packet. A wave packet is a statistical ensemble
of plane waves that constitute a solution to Maxwell’s equations
and form a monochromatic packet of light that propagates into the
solid angle Ω. For succinctness, we will use the term beam synony-
mouslywithwave packet. A beam should be understood as a carrier
of optical energy that radiates into a small, but positive, solid an-
gle Ω, and hence admits a positive cross-sectional area that grows
quadratically with propagation.

Being Fourier transform-pairs, ®𝑬 and ®𝛙 are different represen-
tations of the same data. Nevertheless, it is considerably simpler,
analytically and conceptually, to understand light not as the field
®𝑬 , where complex behaviour arises, but as that collection of plane
waves quantified by ®𝛙.This spatio-temporal decomposition enables
the formulation of wave packets with clear propagation direction
and constant wavelength. This fixes the angular frequency 𝜔 , and
thereby the time-dependent phase term e−i𝜔𝑡 becomes identical
for all plane wave constituents of the packet. As this propagator
is the only time-dependent quantity, working piecewise with pack-
ets of monochromatic plane waves elicits a few key advantages:
(i) in place of a time-dependent formalism, a wavelength-depen-
dent formalism arises; and, (ii) as time can be ignored, temporal
coherence does not need to be considered (monochromatic waves
are perfectly temporally coherent). Tracing fixed-wavelength pack-
ets, instead of tracking the evolution of a time-dependent field, is
the natural course of action in rendering. Temporal coherence ef-
fects are then reintroduced, at no additional effort, by sampling the
entire temporal spectrum (i.e. wavelengths) of light. See Fig. 2 an
illustrative intuitive explanation of how wave packets are formed
and their use.

A wave packet, as formalised, forms an invariant optical field
[Gutiérrez-Vega et al. 2000], meaning that the beam may diffract
on free-space propagation only when partially blocked by an ob-
stacle, otherwise it propagates solely into the solid angle Ω, as de-
sired. When rendering with optical frequencies, we keep 𝐴 and Ω
small, therefore in this work we ignore partial occlusions and the
free-space diffractions that would arise.

Optical coherence. The discussion thus far explains how to spec-
trally decompose an arbitrary electric field. This allows us to form
wave packets—monochromatic beams of light—and we will now
discuss and formalise the optical coherence of these beam.

When dealing with the partially-coherent light that we observe
on a daily basis, the underlying electric field ®𝑬 admits seemingly
random fluctuations. A deterministic study of such fields and pack-
ets is neither feasible nor desirable: our sensors (the eye or a cam-
era) do not observe the rapid individual oscillations of the electro-
magnetic field, but only time-averaged values, therefore observable
optical phenomena are statistical in nature. Hence, we treat ®𝑬 , as
well as any derived wave packet, as a random function (stochastic
process). PLT rendering primitives then aim to quantify the statis-
tics of a wave packet. These statistics are devoid of high-frequency
optical phase, thus are amenable to analytic tools, and are free of
wave-ensemble aliasing. In contrast to radiometric quantities, we
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(a) light source (b) spectral decomposition (c) wave packet (d) propagation via
ray tracing

(e) interaction
with matter

(f) propagation
away

𝐴

Ω

Fig. 2. Physical light transport (PLT): (a) A light source emits electromagnetic radiation. The underlying fields of this radiation fluctuate rapidly, are disorga-
nized and admit a considerable degree of random behaviour (not visualized). (b) We spectrally decompose (spatially and temporally) these fields, viz. Eq. (5),
giving rise to a collection of plane wave constituents that compose the underlying electric field. (c) We select a subset of these plane waves, such that all plane
waves in this subset are of the same frequency and radiate into a small solid angle Ω. This collection formally defines a wave packet—a beam of light radiated
from projected source area𝐴 and with small divergence Ω. Such a construction of a wave packet is always possible for arbitrary physically-realizable electric
fields. The spatial statistical correlation between the plane wave constituents of this wave packet is known as the optical coherence of light, and quantifies
the ability of the beam to interfere with itself. (d) As 𝐴 and Ω are kept small, the cross-sectional area of this beam is small as well (w.r.t. scene geometrical
details). Therefore, to propagate the beam we employ standard ray tracing through the scene. The polarimetric and coherence properties of the beam are
propagated as well. (e) Hence, once a matter is encountered, we have the necessary information to compute rigorous physical optics light-matter interaction,
which is able to reproduce wave-interference and diffraction phenomena. (f) This interaction gives rise to a scattered field, and, as before, we may spectrally
decompose this field and select a scattered beam that propagates into an arbitrary direction.

quantify two-point spatial statistics of the packet, thereby captur-
ing sufficient information to remain consistent with the theory of
electromagnetism.

We now formally restrict the stochastic process ®𝑬 to be a wide-
sense stationary process (implying steady-state rendering), and con-
sider only its far-field statistics (i.e., far from the field’s source).
Since the statistics converge rapidly to the far-field statistics over
the distance of several wavelengths [Agarwal et al. 2004; Charnot-
skii 2019], this is an excellent approximation. Let the wave packet’s
wavenumber be 𝑘 . The plane wave constituents of this wave packet
propagate with directions �̂� that have a small spread (i.e., all propa-
gate into a small solid angle Ω, as before), and we denote the mean
direction of propagation of the entire packet as the unit vector 𝒓 .We
select a transverse basis {�̂�, �̂�}, such that it completes an orthonor-
mal basis {�̂�, �̂�, 𝒓} of R3, but otherwise may be arbitrarily chosen.
This orthonormal basis is termed the local frame of the wave packet.

We may now define the scalar fields 𝐸𝑥 ( ®𝒑, 𝑡) = ®𝑬 ( ®𝒑, 𝑡) · �̂� and
𝐸𝑦 ( ®𝒑, 𝑡) = ®𝑬 ( ®𝒑, 𝑡) · �̂�, which are the transverse components of the
electric field. The core quantities of optical coherence theory are
the four cross-spectral density (CSD) functions between these trans-
verse components [Wolf 2007], viz.

C𝛼𝛽

(
®𝒑, ®𝝃 ; 𝜔

)
≜
〈
𝐸𝛼

(
®𝒑 + 1

2
®𝝃
)
𝐸𝛽

(
®𝒑 − 1

2
®𝝃
)★〉

𝜔
, (7)

with 𝛼, 𝛽 ∈ {𝑥,𝑦}. The operator 〈·〉𝜔 denotes ensemble-averaging,
where the subscript 𝜔 makes explicit the fact that we average over
same-frequency plane-wave constituents of the wave packet. The
CSD functions have units of spectral irradiance (spectral flux per

area) and are the second-order correlations that quantify the abil-
ity of the wave packet to superpose and interfere with a spatially-
shifted version of itself. That is, they describe the statistical simi-
larity between the waveforms of angular frequency 𝜔 that arrive
at the points ®𝒑 ± 1

2
®𝝃 . The point ®𝒑 is an arbitrary position in space,

and ®𝝃 serves as the difference vector between the points. If these
waveforms are similar, then constructive or destructive wave inter-
ference takes place and observable diffractive optical phenomena
may arise. Otherwise, both constructive and destructive interfer-
ence take place with equal probability and, on average, cancel out.
It has been shown that a two-point formalism, as above, is neces-
sary for consistency with electromagnetism [Wolf 2007]. We omit
time 𝑡 from the transverse components 𝐸𝑥,𝑦 in Eq. (7), as ensemble
averaging produces a time-independent quantity. It should be re-
membered that the definitions of the CSDs depend, implicitly, on
the local transverse basis {�̂�, �̂�}.

The generalized Stokes parameters. The CSD functions fully de-
scribe the second-order statistics of the wave packet. We will now
rewrite these quantities in the more convenient form of the gen-
eralized Stokes parameters (gSP), as introduced by [Korotkova and
Wolf 2005]. A gSP vector serves as an extension of the classical,
well-known Stokes parameters vectors to a two-point formalism,
as follows:

S
↔ [𝝁]

(
®𝒑, ®𝝃 ; 𝜔

)
≜


C𝑥𝑥 + C𝑦𝑦

C𝑥𝑥 −C𝑦𝑦

C𝑦𝑥 + C𝑥𝑦

i
(
C𝑦𝑥 −C𝑥𝑦

)
 , (8)
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where [𝝁] = (�̂�, �̂�, 𝒓) is the reference frame with respect to which
the CSDs are defined and, for brevity, we omit the parameter lists to
the CSDs C𝛼𝛽 .The double arrow accent is used to denote quantities
that generalize classical Stokes vectors (i.e., when evaluated S

↔ [𝝁]

reduces to a classical Stokes vector, quantifying radiometric and
polarimetric properties of light).

The gSP vector is a powerful representation of the wave packet’s
statistics, which serves to unify the theories of coherence and polar-
ization into one formalism. This representation is not only conve-
nient, but also both coherence and polarization dictate the observ-
able properties of light, its propagation, and its interaction with
matter. The first element of S

↔ [𝝁] , i.e. S [𝝁]
0 , quantifies the intensity,

while the rest of the elements describe the polarization state [Ko-
rotkova 2017]. See Appendix A for explicit relations. Note that for
the gSP to describe a physically-realizable wave packet, the follow-
ing relation must be enforced:

S [𝝁]
0

(
®𝒑, 0

)2 ≥ S [𝝁]
1

(
®𝒑, 0

)2 + S [𝝁]
2

(
®𝒑, 0

)2 + S [𝝁]
3

(
®𝒑, 0

)2 , (9)

where S [𝝁]
𝑛 is the 𝑛-th element of the vector S

↔ [𝝁] .

3.3 Generalized Radiance and Irradiance
Consider a beam, i.e., a collection of plane waves of wavenumber
𝑘 = 2π/𝜆, radiating into a small solid angle Ω subtended by the
surface Δ𝑆 , as before. Let the mean direction of propagation of the
beam be 𝒓 and mean distance of propagation be 𝑟 . The projected
area (in direction 𝒓 ) of the source producing the radiation is de-
noted 𝐴. That source may be primary—a radiating light source—or
secondary—a scattering optical element. Then the cross-sectional
area of the beam grows as ∼ (𝐴 + 𝑟2Ω) on propagation.

The wave packet’s underlying electric field varies rapidly, spa-
tially and temporally. On the other hand, the angular far-field sta-
tistics of that field vary slowly on Δ𝑆 , and thus can be assumed to
be angularly wide-sense stationary. Formally, the gSP is a fast func-
tion of ®𝝃 but a slow function of �̂�. That is, the gSP quantifies the
mutual coherence between the space points ®𝒑 ± 1

2
®𝝃 . If we were to

shift these points by the same spatial offset (leaving ®𝝃 intact), then
the gSP would change slowly, however if we were to change the dif-
ference vector ®𝝃 between these points, then the gSP would change
far more rapidly. This is because the distribution of irradiance on
the beam’s cross section varies much slower than the correlations
between the waveforms [Wolf 2007].

Hence, we may drop the directional dependence on �̂� and write
S
↔ [𝝁] ( ®𝒑, ®𝝃 ) ≈ S

↔ [𝝁] (®𝒓, ®𝝃 ). Note, the far-field condition mandates that
�̂� ≈ 𝒓 and | ®𝝃 | � 𝑟 . Intuitively, we assume that the statistical prop-
erties of the beam are directionally invariant on Δ𝑆 .This is an excel-
lent approximation for far-field statistics (small Ω) [Steinberg and
Yan 2021b].

In line with the discussion above, we define the differential quan-
tity as the generalized radiance

L
↔ [𝝁]

(
®𝒓 , ®𝝃 ; 𝜔

)
≜

𝜕2

𝜕𝐴𝜕Ω

∮
𝑟Δ𝑆

d2 ®𝒑S
↔ [𝝁]

(
®𝒑, ®𝝃 ; 𝜔

)
≈𝑟2 𝜕

𝜕𝐴
S
↔ [𝝁]

(
®𝒓, ®𝝃 ; 𝜔

)
. (10)
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Fig. 3. Light with anisotropic Gaussian coherence is emitted by a source
and propagates in direction �̂� to the point ®𝒓 . The beam’s local frame is
spanned by �̂�, �̂� and �̂� = �̂� . The coherence volume—the spatial volume over
which optical coherence is maintained—is depicted by the red volume and
is quantified by the shape matrix 𝚯. The coherence length, in the direction
of propagation, is dictated by the standard deviation 𝜎𝑧𝑧 . The plane per-
pendicular to the direction of propagation is termed the transverse plane,
and its intersection with the coherence volume is the coherence area (violet
area). The shape of this area is dictated by the leading principal minor 𝜽 of
the shape matrix and it grows linearly as ( 𝑟𝑘 )

2 on free-space propagation.
Figure adapted from Steinberg and Yan [2021b].

A brief dimensional analysis shows that L
↔ [𝝁] admits units of spec-

tral radiance: the elements of the gSP vector are CSD functionswith
units of spectral irradiance. The integral over the surface 𝑟Δ𝑆 then
has units of power (W) per frequency (Hz), i.e. spectral flux, and the
derivative is per projected source area and solid angle. Steinberg
and Yan [2021a] define a similar quantity, denoted the radiance-
carrying CSD function. Clearly, when evaluated at ®𝝃 = 0, L

↔ [𝝁] is
simply the classical radiometric radiance.Therefore, just as the gSP
generalizes the classical Stokes parameters to a two-point formal-
ism, L

↔ [𝝁] generalizes the classical radiance to a two-point formal-
ism. In similar manner, the (irradiance-carrying) gSP vector S

↔ [𝝁] is
termed the generalized irradiance.

The properties that follow highlight that L
↔ [𝝁] can indeed be un-

derstood as a generalized radiance.

Property 3.1 (ConseRvation of Radiance on fRee-space pRopa-
gation). The spectral radiance quantified by L

↔ [𝝁] remains constant
on far-field propagation.

PRoof. The expression 𝑟2〈𝐸𝛼 (®𝒓)𝐸𝛽 (®𝒓)★〉𝜔 , for 𝛼, 𝛽 ∈ {𝑥,𝑦}, re-
mains constant in the far field on free-space propagation [Steinberg
and Yan 2021a] (the the inverse square law for spherical waves),
therefore 𝑟2S

↔ [𝝁] (®𝒓, 0) also is a constant function of 𝑟 .Then, the spec-
tral radiance 𝐿 = L[𝝁]

0 (®𝒓, 0 ; 𝜔) (Eq. (37)) remains constant on free-
space propagation. □

Property 3.2 (LineaRity undeR supeRposition). Given a pair of
beams with generalized radiances L

↔ [𝝁]
1 and L

↔ [𝝁]
2 . If these packets are
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mutually-incoherent, then the superposition of these wave packets is
linear, viz. L

↔ [𝝁]
1 +L

↔ [𝝁]
2 .

PRoof. Let ®𝑬1, ®𝑬2 be the underlying electric fields of L
↔ [𝝁]
1 and

L
↔ [𝝁]
2 , respectively. Assume these fields are decomposed under the

same transverse basis. Let 𝐶1,𝛼𝛽 , C2,𝛼𝛽 be the CSDs of these fields
and C𝛼𝛽 be the CSDs of the superposition ®𝑬 = ®𝑬1 + ®𝑬2, for 𝛼, 𝛽 ∈
{𝑥,𝑦}. Let ®𝒓1,2 = ®𝒓± 1

2
®𝝃 be a pair of points, then,mutual incoherence

implies that 〈𝐸1,𝛼 (®𝒓1)𝐸2,𝛽 (®𝒓2)★〉𝜔 = 0, therefore

C𝛼𝛽

(
®𝒓, ®𝝃

)
=
〈[
𝐸1,𝛼 (®𝒓1) + 𝐸2,𝛼 (®𝒓1)

] [
𝐸1,𝛽 (®𝒓2) + 𝐸2,𝛽 (®𝒓2)

]★〉
𝜔

= C1,𝛼𝛽

(
®𝒓, ®𝝃

)
+ C2,𝛼𝛽

(
®𝒓, ®𝝃

)
.

Hence, L
↔ [𝝁]
1 +L

↔ [𝝁]
2 is the wave packet of the superposition. □

Analytic representation of a beam. The quantity L
↔ [𝝁] , defined in

Eq. (10), serves as a complete description of a beam of light. How-
ever, its elements are functions, in contrast to the numeric values
admitted by classical radiometric quantities. In order to represent
a wide family of CSD functions, Steinberg and Yan [2021b] pro-
pose expanding the CSDunder the anisotropicHermite-Gauss func-
tional basis.This elicits multiple benefits: (i) representation reduces
to tracking numeric coefficients; and (ii) the Hermite-Gauss func-
tions admit useful analytic properties which greatly simplify the
diffraction formulae. We proceed in a similar fashion, but restrict
the expansion to the 0th-order coefficient only, i.e. a multivariate
anisotropic Gaussian.

Definition 3.1 (GeneRalized Radiance with Gaussian CoheR-
ence). The radiance-carrying generalized Stokes parameters of a
beam with anisotropic Gaussian spatial coherence is

L
↔ [𝝁]

(
𝑟, ®𝝃 ; 𝜔

)
≜ ei𝑘𝜉𝑧

[
𝐿𝑥 g𝚯𝑥

(
®𝝃
)
®𝑺LHP + 𝐿𝑦 g𝚯𝑦

(
®𝝃
)
®𝑺LVP

+
√
𝐿𝑥𝐿𝑦 g𝚯1/2

(
®𝝃
)
®𝑺c (𝜒, 𝜍)

]
, (11)

where 𝑟 is the mean propagation distance, g is the (unnormalized)
anisotropic Gaussian, defined in Eq. (1), and the common polariza-
tion states are defined in Eq. (4). The spectral radiances carried by
each transverse component are 𝐿𝑥,𝑦 , the signed degree-of-diagonal
polarization and the signed degree-of-circular polarization are 𝜒 and
𝜍 , respectively. See Appendix B for a brief derivation. The local
frame is [𝝁] = (�̂�, �̂�, �̂�), where �̂�, �̂� span the transverse plane and �̂�
is the (mean) direction of propagation of the packet (the positive 𝑧
direction in the local frame). The coherence properties of the wave
packet are quantified by the shape matrices:

𝚯𝑥,𝑦,1/2 ≜
 𝑟 2

𝑘2 𝜽𝑥,𝑦,1/2
𝜎2𝑧𝑧

 with 𝜽 1/2 ≜
𝜽𝑥 + 𝜽𝑦

2
(12)

and where 𝜽𝑥,𝑦 are positive-definite, real 2 × 2 matrices.

The total spectral radiance carried by the wave packet is 𝐿 =
𝐿𝑥 + 𝐿𝑦 , while 𝐿𝑥 − 𝐿𝑦 , 𝜍 and 𝜒 partition the energy into different
states of polarization, see Appendix A. These quantities might be
wavelength dependent, but are otherwise constant—a restatement
of the fact that radiance remains constant on propagation (Prop-
erty 3.1).

These classical quantities are endowed with the transverse shape
matrices𝚯𝑥,𝑦—tensors that serve to express the wave properties of
the packet and quantify the first-order geometric properties of co-
herence [Steinberg and Yan 2021b]: the coherence area, shape and
length. The leading principal minors 𝜽𝑥,𝑦 are positive-definite 2×2
real matrices that fully describe the coherence area, while𝜎𝑧𝑧 > 0 is
the standard variance of spatial coherence in the direction of propa-
gation, i.e. the coherence length (see Fig. 3). 𝜽𝑥,𝑦 and 𝜎𝑧𝑧 also remain
constant on propagation.The block-diagonal structure of the shape
matrices reflects the quasi-homogenous beam assumption (the sta-
tistics are constants across the cross section of the beam, as quan-
tified by Eq. (10)) that implies symmetry with respect to the trans-
verse plane. Perfectly spatially-coherent and incoherent light are
the limiting cases where the singular values of 𝚯 tend to infinity
and 0, respectively.

Discussion. Definition 3.1 defines an expression for an arbitrary
partially-polarized, partially-coherentwave packetwith anisotropic
Gaussian coherence. In general, light does not admit anisotropic
Gaussian spatial coherence. However, radiation from large (much
greater than wavelength) light sources typically can be approxi-
mated well via a Gaussian coherence: This can be deduced by ap-
plying the Central Limit Theorem to a wave packet that is com-
posed of very many statistically-independent contributions, each
arising from a different radiator in the source; alternatively, the far-
field spatial coherence function is analytically related to the source
geometry via a Fourier transform, and for uniform isotropically-
radiating spherical, cylindrical, or rectangular sources the coher-
ence function takes the form of a sinc function or a Bessel function
of the first kind [Steinberg and Yan 2021a], all of which admit good
Gaussian fits (see Steinberg and Yan [2021b, Fig. 4]). Similar rea-
soning also applies to sources with a Gaussian distribution of radi-
ating intensity (good approximation for thermal and gas-discharge
sources). In the following subsections, we will discuss scattering
and interaction with matter, and present additional fundamental ar-
guments that suggest that spatial coherence retains its anisotropic
Gaussian shape on scattering as well.

Hence, for general-purpose physical-optics rendering and com-
putational optics applications, an assumption of anisotropic Gauss-
ian spatial coherence is a decent approximation: we are able to rep-
resent light of arbitrary coherence area and length, and any states
of polarization. This representation of a wave packet reduces to
a few numeric constants: in addition to the common radiometric
and polarimetric quantities 𝐿𝑥,𝑦, 𝜒, 𝜍 , we simply need to keep track
of the constant shape matrices 𝜽𝑥,𝑦 and 𝜎𝑧𝑧 . Furthermore, as the
anisotropic Gaussian is simply the 0th-order Hermite-Gauss func-
tion, wemay take advantage of a simplified form of the light-matter
interaction theory developed by Steinberg and Yan [2021b]. Note,
only the spatial coherence is restricted to an anisotropic Gaussian.
No assumptions are made regarding the temporal coherence (with
the exception of wide-sense stationarity) and our rendering frame-
work works with light of arbitrary spectral content.

For the rest of the paper, we assume that all generalized radiance
and irradiance vectors (radiance- and irradiance-carrying gSP vec-
tors) admit anisotropic Gaussian spatial coherence, as defined in
Definition 3.1.
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Fig. 4. Conservation of optical entropy on scattering: A beam is incident
upon an optical element (a scattering material). The beam’s electric field
(real part) on the 𝑥𝑧-plane of the local frame (as defined in Fig. 3) is visu-
alized: yellow and red colours for positive values, and cyan and blue for
negative values. The beam scatters and gives rise to scattered beams. Any
physically-realizable electric field can be written as a sum of its principal
modes—coherent, butmutually-incoherent, fields—and the principal modes
of the incident and scattered beams are visualised (amplitude and phase on
the transverse plane) by the bottom left and bottom right, respectively, sets
of insets. Due to reasons discussed in Subsection 3.4, an optical element
may be understood as a deterministic finite-state automaton (DFA) that
acts upon these modes. Hence, while the electric fields and modal decom-
position of the incident and scattered beam in general differ, an important
realization is that the modal density (and thus, entropy) remains invariant
on scattering, and therefore the light’s coherence properties are conserved
as well. Note that the shownmodal decomposition is a simple example, real
partially-coherent light will admit a far greater modal density.

3.4 Entropy and Scattering Conservation Laws
In this subsection we derive important conservation laws that set
fundamental constraints on the how the coherence properties of
light are transmitted (scattered) through an optical element. We
present a general argument that is based on thermodynamic con-
siderations. The motivation is two-fold: (i) show that if the incident
light admits Gaussian spatial coherence, then, for a wide class of
optical elements, the scattered light is also Gaussian in coherence;
and (ii) derive constraints on the transformation of spatial coher-
ence on scattering.

Consider a (monochromatic) partially-coherent beamof light that
is incident upon an optical element (e.g., a surface or a medium)
and is scattered by it. Due to the linearity of Maxwell’s equations,
we may always write the underlying electric field 𝐸 as a (finite) su-
perposition of principal modes 𝐸 =

∑
𝑗 𝐸 𝑗 , such that each mode

is a fully-coherent solution to Maxwell’s equations, but the modes
are pair-wise mutually-incoherent. Such a (finite) modal decompo-
sition depends on the optical element, but is always possible [Fabre
and Treps 2020]. Assume that the incident beam consists of 𝑁 such
modes, which are then scattered by the optical element into 𝑀
modes, that constitute the scattered beam.

We may understand these modes as information carriers: Each
principal mode may contain, at most, constant bits of entropy (as it

is fully coherent over spacetime). The modes are pair-wise incoher-
ent, hence they act as independent information carriers.The optical
element is then a form of a computational device that generates𝑀
output modes based on the 𝑁 input modes.Then, by the second law
of thermodynamics, we immediate state that 𝑁 ≤ 𝑀 : entropy may
only increase, as this computational device has nomeans of concen-
trating 𝑁 input channels into strictly less than 𝑁 output channels
(without a priori knowledge of the input’s information content).

When is entropy not conserved, i.e. 𝑁 < 𝑀? Injection of entropy
requires (i) information erasure, i.e. absorption; or (ii) active gener-
ation of entropy, via an external power source. Assume that the
optical element does not have access to an external energy source.
Hence, our computation device must be stateless and memoryless:
it may not draw random data or access memory (as writing to mem-
ory requires information erasure, which by Landauer’s principle
requires an external source of entropy), hence it may not actively
emit light or admit time-varying scattering characteristics. Then,
such a passive optical element strongly-couples the input and opti-
cal output modes [Zhang et al. 2019]. Formally,

𝑁 ≤ 𝑀 = 𝑀opt + �̃� ≤ 𝑁 + �̃� , (13)

where �̃� is count of non-optical modes (most often, such modes
arise via absorption, which produces heat that is then radiated out-
side the visible spectrum). Strict 𝑀opt < 𝑁 is only possible when
the optical element perfectly absorbs one ormore of the inputmodes.
As 𝑀opt ≤ 𝑁 , we conclude that a passive optical element may not
produce a less coherent scattered beam (a consequence of the fact
that real physical work is needed in order to inject entropy). The
optical element may produce a more coherent scattered beam, but
only at the price of absorbed modes.

Although such mode-specific absorption and scattering is theo-
retically possible to achieve, it is not easy to engineer: the computa-
tional device—which is stateless and memoryless, as we concluded,
and hence acts as a deterministic finite-state automaton (DFA)—
would need to recognize distinct input modes in order to perform
different operations on thesemodes. In the realm of photonics, such
careful engineering of mode-specific resonance is a very active area
of research and is known as material structuring [Chao et al. 2021],
and usually requires wavefront shaping of the incident beam [Yu
et al. 2020], i.e. targeting a particular set of a priori chosen input
modes (violating the assumption that the computational device en-
codes no a priori knowledge of the input).

As an aside, we note that conservation of (optical) entropy, i.e.
𝑁 = 𝑀opt, implies that the scattering process is (theoretically) re-
versible. For example, a simple diffuser does not increase entropy:
with precise knowledge of the diffuser’s scattering characteristics,
wemay design a hologram that reverses the process by reconstruct-
ing the 𝑁 input modes from the 𝑀opt output modes. Some mate-
rials, like structured periodic gratings that disperse light, admit
strong frequency-dependent, but not mode-dependent, response.
Indeed, essentially all optical interactions of light with matter are
frequency dependent, but frequency plays no role in the above anal-
ysis: recall that our framework deals with frequencies piece-wise
(by spectrally decomposing light) and all the principal modes are
monochromatic of a shared frequency. Other materials may couple
the processes of absorption and optical emission (via fluorescence
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or phosphorescence), however the emission is incoherent with the
scattered modes (and usually of a different frequency) and hence
has no effect on the scattered modes.

Under the assumption that the optical element absorbs in amode-
agnostic fashion, absorption behaves as a random process that is
independent of the incident modes and its expected value is the to-
tal absorptivity of the optical element. In Appendix C we formalize
this argument, and derive the following important scattering law:

TheoRem 3.2 (Local ConseRvation of CoheRence ARea). Let
a beamwith cross-spectral density (CSD) function C(®𝒑, ®𝝃 ) be incident
upon a passive, linear, mode-agnostic optical element. This CSD is de-
fined on the normalized transverse plane of the incident beam. Then,
the CSD function on the normalized transverse plane of the scattered
beam is |𝜍 | 2 C, i.e. the CSD scaled by a coupling coefficient 𝜍 ∈ C
(the ratio between the scattered and incident amplitudes).

Thenormalized transverse plane is defined as the transverse plane
transformed such that the beam’s cross section forms a unit disk
(because the incident and scattered modes are defined in their own
arbitrary spatial reference frames). In the far-field, such transfor-
mations are always linear, implying that the beam cross section
always forms an ellipse. If the incident beam’s spatial coherence is
of the form of an anisotropic Gaussian, then Theorem 3.2 implies
that:

(1) The scattered beammust also admit anisotropic Gaussian co-
herence.

(2) The ratio between the coherence area and the beam’s cross-
sectional area is a conserved quantity on propagation and
scattering (by linear, passive,mode-agnostic optical elements).

If 𝑟 2

𝑘2 𝜽 is the leading 2 × 2 principal minor of the shape matrix of
a beam with anisotropic Gaussian spatial coherence (as defined in
Definition 3.1), then the spatial coherence area |𝜽 | is a conserved
quantity (because the beam cross section grows as 𝑟2).

We have invoked arguments based on entropy to show that the
spatial coherence of a beam relative to its cross-section area is a
conserved quantity. The fact that the ratio between the coherence
patch area and the beam cross section is a conserved quantity has
also been noted before in very limited settings [Garcia-Sucerquia
andMedina E 2003;Medina and Pozzi 1990]. However, to our knowl-
edge, the general result we presented here has not been considered
before and is a fundamental result in the theory of coherence trans-
port. See Fig. 4 for an illustration.

Failure cases. As Gaussianity can be understood as a maximal-
entropy model (indeed, this is a restatement of the Central Limit
Theorem under Lindeberg’s condition [Linnik 1959]), our reason-
ing does not necessarily hold if the incident beam is not Gaussian
in spatial coherence.This is because coherence may now transform
both in structure and area, while still conserving entropy. However,
as we discussed qualitatively and quantitatively in Subsection 3.3,
light emitted by spontaneous emission sources is very well approxi-
mated by Gaussian spatial coherence, and, as stated byTheorem 3.2,
that remains the case on scattering by essentially all optical ele-
ments that are of interest to use.

Injection of optical entropy is often trivially handled by parti-
tioning the exitant energy into passively-scattered beams, emitted

beams (produced by a power source), and potentially re-emitted
beams (e.g., fluorescence). As these classes of exitant beams are
essentially always mutually-incoherent, this approach is accurate.
Rarely, subtleties may arise: for example, under temporal entropy
injection. Consider a mechanically-rotated etched glass plate (a dif-
fuser). Once scattered by this diffuser, the observed, time-averaged
light is in fact the superposition of contributions from distinct spa-
tial regions on the diffuser. If the diffuser is rotated rapidly enough,
then multiple statistically-independent regions contribute to the
scattered beam, and decoherence takes place. That is, mechanical
energy is transformed into optical entropy. In this work we ignore
such materials. Any decoherence requires an injection of entropy,
and future work could devise means to integrate over the source of
entropy.

On the other hand, rare structuredmaterials may produce amore
coherent beam than the incident, as mentioned. In this work, we as-
sume that the materials that we wish to render are entirely devoid
of such structuring.We do note, however, that due to the hard phys-
ical limit set by Eq. (13) for passive (non-emitting, non-amplifying)
optical elements, an increase in coherence would always come at a
cost: to produce a more coherent beam, mode-dependant annihila-
tion must take place. In other words, to double the coherence area,
at least half the energy needs to be absorbed.

3.5 Diffraction by Matter
To quantify the matter’s response to incident light, we build upon
the framework developed by Steinberg and Yan [2021b]. However,
our restriction to a Gaussian spatial coherence as well as Theo-
rem 3.2 serve to considerably simplify the formulae. As a matter
of fact, we will show that classical (“non wave-aware”) quantities
are sufficient to discuss and formalise scattering by matter.

Consider a spatial scattering region P, centred around the ori-
gin. The matter’s scattering characteristics that emerge in that re-
gion are treated as a spatial stochastic process, and we restrict that
process to the class of locally-stationary processes, as proposed by
Steinberg and Yan [2021b]. A comprehensive introduction to the
relevant aspects of scattering by locally-stationary matter as well
as the related generalized Mueller calculus is presented in our sup-
plemental material.

Let a beam, with generalized irradiance S
↔ [𝝁𝑖] and anisotropic

Gaussian spatial coherence, be incident upon a scatterer (a pas-
sive optical element) that occupies the region P ⊂ R3. The shape
matrices, irradiance carried by each transverse component and the
degrees-of-diagonal and circular polarization of the incident beam
are 𝚯(i)

𝑥,𝑦,1/2, 𝑆
(i)
𝑥,𝑦 and 𝜒 (i) , 𝜍 (i) , respectively. Let 𝒔 and 𝒓 be the (mean)

incident and scattering directions. We denote the incident and scat-
tering local reference frames as [𝝁𝑖] and [𝝁𝑜], respectively.

Definition 3.3 (Locally-StationaRyMatteR). Thequantities that
follow describe the locally-stationary matter’s scattering character-
istics:

(i) The power spectral density (PSD) p( ®𝜻 ; 𝜔), where ®𝜻 is spa-
tial frequency, describes statistical perturbations in the scat-
tering characteristics. While, in general, the PSD might be a
(complex-valued) Mueller matrix, for simplicity we restrict it
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to a scalar function. Generalizing to a Mueller matrix is not
difficult, see Steinberg and Yan [2021b, Supplemental].

(ii) The polarimetric BSDF (pBSDF) 𝑴 [𝝁𝑖]→[𝝁𝑜] (𝒔, 𝒓 ; 𝜔), is the
real, average (over the entire matter) Mueller matrix. The pB-
SDF transforms from the incident to the scattering reference
frames, and hence its definition depends on these frames.

The PSD is a well known and extensively studied quantity in
optical scattering literature: It is convenient to formulate statisti-
cal models, like the K-correlation surface model [Stover 2012], via
the PSD of the spatial features. Indeed, it is typically the PSD of
a surface—in contrast to an explicit height field—that is measured
from a physical sample [Siewert et al. 2008]. Likewise, the pBSDF
has also been well studied and used in computer graphics, see Sec-
tion 2.

The wave BSDF. Denote the shorthands
ΞΞΞ(i)
𝑥,𝑦,1/2 ≜ 𝑸 [𝝁𝑖]𝚯

(i)
𝑥,𝑦,1/2𝑸

⊺
[𝝁𝑖] and ®𝒉 ≜ 𝑘 (𝒓 + 𝒔) , (14)

i.e.ΞΞΞ are the incident shapematrices transformed to the global (mat-
ter’s) reference frame, and define the diffraction operator :

D{ΣΣΣ} ≜
(
|ΣΣΣ|
8π3

) 1/2 (
p ∗ gΣΣΣ

−1
) (
®𝒉
)
, (15)

which is a three-dimensional convolution between the PSD and an
anisotropic Gaussian with some positive-definite matrix ΣΣΣ, evalu-
ated at thewave-optics analogue of the “half vector” ®𝒉. In Section S2
in our supplemental material we derive the following central result:
The scattering wave BSDF (wBSDF) for radiation that undergoes
scattering is defined as

Wscat
{
S
↔ [𝝁𝑖]

}
≜ cos𝜗𝑜𝑴 [𝝁𝑖]→[𝝁𝑜]

×
[
𝑆 (i)
𝑥 D

{
ΞΞΞ(i)
𝑥

}
®𝑺LHP + 𝑆 (i)

𝑦 D
{
ΞΞΞ(i)
𝑦

}
®𝑺LVP

+
√
𝑆 (i)
𝑥 𝑆 (i)

𝑦 D
{
ΞΞΞ(i)

1/2

}
®𝑺c
(
𝜒 (i) , 𝜍 (i)

)]
, (16)

where 𝜗𝑜 is the inclination angle and the shorthands ®𝑺LHP, ®𝑺LVP, ®𝑺c
were defined in Eq. (4). In similar manner to the classical BSDF,
the wBSDF acts upon the incident generalized irradiance to pro-
duce a scattered radiance (see Fig. 5). For each polarization state,
coherence-awarewave-interference effects arise via the diffractions
process formalised by the diffraction operatorD, that acts upon the
respective shape matrix. The produced radiance-carrying classical
Stokes parameters vector ®𝑳 [𝝁𝑜] = W{S

↔ [𝝁𝑖]} fully quantifies the ra-
diometric and polarimetric properties of the scattered radiation via
the typical Stokes relations, viz.:

𝐿 (o)
𝑥,𝑦 =

𝐿
[𝝁𝑜]
0 ± 𝐿

[𝝁𝑜]
1

2
, 𝜒 (o) =

𝐿
[𝝁𝑜]
2√

𝐿 (o)
𝑥 𝐿 (o)

𝑦

, 𝜍 (o) =
𝐿
[𝝁𝑜]
3√

𝐿 (o)
𝑥 𝐿 (o)

𝑦

.

Observe that the light’s radiometric, polarimetric and wave prop-
erties all play a role in the process of scattering of light by matter.
The interference process that is formalised by the scatteringwBSDF
gives rise to coherence-induced spectral and polarimetric changes.
These effects have been previously observed and studied in the op-
tical literature [Dogariu and Wolf 1998; Wang and Zhao 2010] and
our rendering framework is able to capture such phenomena.

The shapematrices. ThewBSDF produces a classical quantity, and
we now turn our attention to the scattered shape matrices, specifi-
cally the 2× 2 leading principal minors 𝜽 (o)

𝑥,𝑦 . Theorem 3.2 fixes the
most important—in terms of optical accuracy and visual response—
aspect of coherence: the spatial coherence area on the transverse
plane. To complete the picture, we now need to quantify the power
transfer between the transverse components of the incident and
scattered beams, aswell as the geometric deformation that the beam
undergoes on scattering. Our primary contribution here stems from
the realization that this information can be approximated from the
classical pBSDF𝑴 [𝝁𝑖]→[𝝁𝑜] , andwe do not requiremore complicated
quantities to describe matter.

We start with a short intuitive discussion, see Fig. 6. Consider
the scattered beam and the shape of its intensity distribution on the
transverse plane a short distance away from the scattering matter.
By the Van Cittert-Zernike (VCZ) theorem [Mandel andWolf 1995]
this intensity distribution is related via a Fourier transform to the
spatial coherence of the beam once it propagates further away.That
is, if the intensity shape is isotropic, then the spatial coherence is
isotropic as well and the leading principal minors of the shape ma-
trices must be proportional to identity. On the other hand, if the
scattering process induces anisotropy in that intensity shape, then
that Fourier relation means that the leading principal minors will
encode an inverse anisotropy (a stretch becomes a contraction, and
vice versa).

As Theorem 3.2 mandates that the coherence area is a conserved
quantity, we are left with only two degrees-of-freedom for 𝜽𝑥,𝑦 : the
eccentricity of the coherence ellipse and its orientation on the trans-
verse plane. These are geometric deformations, hence the transfor-
mation of the intensity shape can be deduced from the curvature
of the scattered intensity, i.e., via the second-order derivatives of
the pBSDF. The inverse of that transformation, then, quantifies the
transformation of the spatial coherence on the transverse plane.We
will now formalise these arguments and present a approach to com-
pute the scattered shape matrices. Our discussion remains general
and applicable to any material that can be described using Defini-
tion 3.3, however simplified relations are noted for specific materi-
als in Subsection 4.1.

Any physically-realizable Mueller matrix can be decomposed via
the serial Lu–Chipman decomposition [Pérez and Ossikovski 2016,
Ch. 8.2], as follows:

𝑴 [𝝁𝑖]→[𝝁𝑜] =𝑚00𝑴Δ𝑝𝑴𝑑𝑴𝑟 , (17)

where 𝑚00 is the mean intensity coefficient of the pBSDF, i.e. the
top left element, 𝑴Δ𝑝 is the normalized (unit mean intensity) de-
polarizer with zero diattenuation, 𝑴𝑑 is a normalized pure (non-
depolarizing) diattenuator and𝑴𝑟 = diag {1, 𝑹𝑀 } is a pure retarder.
We denote 𝒓⊥ as the plane that is perpendicular to 𝒓 , i.e., the trans-
verse plane of the beam. The transformation of the scattered inten-
sity of the transverse plane is then the Hessian of the diattenuator:

𝑼𝑥,𝑦 ≜
1����̃�−1
𝑥,𝑦

��� �̃�−1
𝑥,𝑦 , with (18)

�̃�𝑥,𝑦 ≜ ®𝑺
⊺
0

d2

d®𝒓 ′2
[
cos𝜗𝑜𝑚00𝑴𝑑

] ����
�̂�, �̂�+®𝒓 ′

®𝑺LHP,LVP , (19)

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.



1:12 • Shlomi Steinberg, Pradeep Sen, and Ling-Qi Yan

30
°

15
°

0
°

-30
°

-15
°

30
°

15
°

0
°

-30
°

-15
°

30
°

15
°

0
°

-30
°

-15
°

30
°

15
°

0
°

-30
°

-15
°

λ=640nm λ=549nm λ=470nm Lambertian BRDF

(a) 𝜎 ≈ 35 µm (b) 𝜎 ≈ 15 µm (c) 𝜎 ≈ 5 µm (d) 𝜎 ≈ 1 µm

𝜗𝑜 𝜗𝑜 𝜗𝑜 𝜗𝑜

𝐿 𝐿 𝐿 𝐿

Fig. 5. Thewave BSDF (wBSDF): Plots of the radiance𝐿 = 𝐿𝑥 +𝐿𝑦 scattered by a scratchedmetal surface. Incident light with unit irradiance impinges upon the
surface at normal incidence. Three different representative wavelengths are used as well as light of different spatial coherence area: (a) comparable to sunlight;
(b) moderately coherent; (c) weakly coherent; and (d) highly diffused. Also plotted are Lambertian BRDF lobes, viz. 1

π cos𝜗𝑜 , where 𝜗𝑜 is the scattering angle,
in gray, for comparison. The standard deviation 𝜎 of the characteristic length of spatial coherence on the transverse plane is listed. Incoherence is equivalent
to an angular blurring of the wave BSDF (convolution with the inverse coherence Gaussian), and we illustrate the angular magnitude of the blur using the
purple lines at the top of the plots. An important distinction between the classical BSDF and our wBSDF is that, due to constructive wave interference, the
scattered power ratio 𝜕Φ(o)/𝜕Φ(i) may now surpass unity (assuming Ω (i) = Ω (o) , where Ω is the solid angle into which a beam propagate, and assuming no
re-emission effects, like fluorescence). Nevertheless, energy must be conserved over the entire scattering codomain (the unit sphere or hemisphere).

with the derivative taken with respect to ®𝒓 ′ ∈ 𝒓⊥, and 𝒔 (the inci-
dent direction) is held fixed. The vector on the right, ®𝑺LHP or ®𝑺LVP,
is used to select a transverse component, while ®𝑺0 masks out the
total scattered radiance. These vectors are defined in Eq. (4). As dis-
cussed, the inversion of �̃�𝑥,𝑦 is a consequence of VCZ theorem’s
Fourier relation. The normalization to a unit determinant done by
𝑼 is a restatement of the fact that 𝑼 should not change the coher-
ence area. To compute �̃� , we may derive an analytic expression for
the Hessian or simply employ a finite differences approximation
(via Taylor’s theorem). The second approach requires evaluating
the pBSDF at an additional 5 closely-spaced values of 𝒓 , and, while
crude, is an acceptable approximation, due to the normalization to
unit determinant. The purpose of the decomposition (Eq. (17)) is to
extract the pBSDF’s diattenuating component, which dictates the
geometric deformations discussed above, and induces rotation be-
tween the transverse components

Let 𝜑𝑧 be the Euler rotation angle around the 𝑧-axis encoded by
the matrix 𝑴𝑟 (as in the decomposition of the pBSDF, i.e. Eq. (17)).
This angle describes the rotation of the transverse plane performed
by the pBSDF and captures both the transformation between the
incident and scattered reference frames, as well as any retardation.
Let 𝑹 (𝜑𝑧) be a 2 × 2 rotation matrix through an angle 𝜑𝑧 . Putting
it all together, the scattered shape matrices can be written in the
following form:

𝜽 (o)
𝑥,𝑦 = 𝑼𝑥,𝑦𝑹 (𝜑𝑧)

⊺
(
cos2𝜑𝑧 𝜽

(i)
𝑥,𝑦 + sin2𝜑𝑧 𝜽

(i)
𝑦,𝑥

)
𝑹 (𝜑𝑧)𝑼

⊺
𝑥,𝑦 . (20)

A quick check verifies that 𝜽 (o)
𝑥,𝑦 remain real positive-definite. The

above equation first mixes the incident shape matrices based on
the rotation between the incident and scattered transverse planes,
then transforms each to the orientation of the transverse plane in
the outgoing reference frame, and, finally, the discussed geometric
deformations are applied to each matrix.

In Appendix D we provide a step-by-step overview of how to
decompose a non-depolarising Mueller matrix as in Eq. (17) and
present a simpler expression for �̃� .

Relative roughness and specular lobes. Modern scatter theories
(forms of the “T-matrix approach”, see Sakurai andNapolitano [2021,
Ch. 6] or Newton [1982, Ch. 7.2.2]) partition the contributions of
the scatterer to the exitant energy into two: (i) radiation that inter-
acts with scatterer; and (ii) “direct”, or specular, contributions. The
first type of contributions give rise to the coupled modes discussed
in Subsection 3.4 and this active interaction with the scatterer is
described by Eq. (16). The second contributions produces no inter-
ference effects. The radiance of the “direct” field is then

Wdirect
{
®𝑺 (i)

}
≜ 𝑴

[𝝁𝑖]→[𝝁𝑜]
direct

®𝑺 (i) , (21)

(i.e., the direct wBSDF is equivalent to the pBSDF) where ®𝑺 (i) is the
irradiance (in classical Stokes parameters form) of the incident ra-
diation, i.e. S

↔ [𝝁𝑖] evaluated at ®𝝃 = 0. The (non-depolarising) pBSDF
𝑴direct quantifies the direct contributions, and typically is simply
the Mueller matrix form of the Fresnel relations for specular reflec-
tion and refraction (in the directions dictated by the law of reflec-
tion and Snell’s law, respectively), though any specular lobes are
possible.The shape matrices of the direct contributions still need to
be rotated, as in Eq. (20) (with respect to the direct pBSDF), but with
a simplification: as the specular lobes are discrete, no anisotropies
arise and we set 𝑼𝑥,𝑦 ≡ 𝑰 .

The energy partitioning between these contributions depends
on the matter’s properties. Davies [1954] rigorously derived an ex-
ponential relation that depends on the roughness of a scattering
surface. This remains the state-of-the-art, with only minor adjust-
ments made by Harvey [2012] that replace that roughness with a
band-limited effective roughness, and we use the same approach.
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Fig. 6. Illustration of light that is scattered of the surface of an object. The
intensity distribution on the transverse plane of the scattered beam is illus-
trated on the green plane on the right. This intensity distribution is related
to the spatial coherence function of the light on the transverse plane af-
ter propagation (red plane on the left) via a Fourier transform. (a) If the
material scatters isotropically and the intensity distribution is isotropic,
then the spatial coherence must be isotropic as well. (b) On the other hand,
anisotropy in the scattering characteristics might induce deformations in
the beam. Then, the spatial coherence after propagation undergoes a trans-
formation that is the inverse of the intensity distribution’s transformation.
This transformation of the spatial coherence on the transverse plane is in
fact the leading principal minor of the shape matrix 𝜽 .

While colloquially the term “roughness” is typically used when dis-
cussing surfaces, we define and use it for any matter, and in Appen-
dix E we show how the relative roughness relates to the PSD.

We are now ready to formulate the total wBSDF:

W ≜ 𝛼directWdirect
{
®𝑺 (i)

}
+ (1 − 𝛼direct)Wscat

{
S
↔ [𝝁𝑖]

}
, (22)

where 𝛼direct = exp
[
−(𝑘 cos𝜗𝑖 𝑞rel)2

]
partitions between the di-

rect and scattered contributions, with 𝑞rel being the relative rough-
ness (Eq. (63)) and 𝜗𝑖 the incident inclination angle.

Importance sampling the wBSDF. The total wBSDF consists of
three quantities that need to be importance sampled: (i) the ratio
partitioning into direct and scattered contributions, 𝛼direct; (ii) the
direct wBSDFWdirect; and (iii) the scatteringwBSDFWscat. Impor-
tance sampling the first two is well understood: the direct wBSDF is
simply a classical pBSDF that consists of, at most, a finite count of
specular lobes (where no diffraction occurs and coherence plays no
effect). More troublesome is the scattering wBSDF: the power con-
tained in the scattered beam depends on the coherence properties
of the incident light. Hence, when performing bi-directional path
tracing, the scattering wBSDF cannot be evaluated when tracing
from a sensor (as the shape matrices 𝚯 are unknown), and exact
importance sampling is not possible.

Nevertheless, the angular distribution of power quantified by the
scattering wBSDF may be estimated. The diffraction operator D

acts as a low-pass filter that performs an angular Gaussian blur of
the PSD: lower spatial coherence results in greater blurring of the
pBSDF, while perfectly-coherent radiation induces no filtering. Let
𝜎min be a global (scene wide) lower bound on the singular values
of the coherence shape matrices 𝚯, implying that we do not render
with light that admits a characteristic length of its coherence vol-
ume that is lower than 𝜎min (satisfying this constraint is discussed
in Section 4). Then, we rewrite the scattering wBSDF as:

Wscat
{
S
↔ [𝝁𝑖]

}
= WMInc

{
S
↔ [𝝁𝑖]

}
+ W̃

{
S
↔ [𝝁𝑖]

}
, (23)

where the first term is themaximally-incoherent wBSDF, defined as

WMInc ≜ Wscat

����
ΞΞΞ(i)
𝑥,𝑦,1/2→𝜎min𝑰

, (24)

i.e. the scattering wBSDF as in Eq. (16), but evaluated with respect
to the shape matrices 𝜎min𝑰 . The second term is then W̃ ≜Wscat−
WMInc, which encodes the very high frequencies of the wBSDF
and depends on the light’s coherence (see Fig. 7). Therefore, the
maximally-incoherent wBSDFWMInc serves as an envelope to the
actual scattering wBSDF, in the sense that if the scattered radiance
quantified by WMInc is negligible then the actual scattered radi-
ance (quantified by Wscat) must be negligible as well, though the
converse does not always hold. No coherence information is re-
quired to evaluate the maximally-incoherent wBSDF, hence it can
be importance sampled when tracing paths from light or sensor.

4 METHODOLOGY OF RENDERING WITH PLT
Building upon the theory presented in Section 3, we outline the
implementation of our rendering framework. Our implementation
is a custom integrator plugin for Mitsuba 0.6 [Jakob 2010], based
upon the bi-directional integrator bdpt.

Light emission. Light sourcesmay be arbitrarily shaped, butmust
admit a positive spatial extend. We sample a position on the light
source and treat that position as a small radiatorwith projected area
𝐴 (in the direction of propagation). Effectively, we understand the
light source as a very large collection of mutually-incoherent small
radiators—an excellent model for spontaneous emission sources.
That radiator emits a beam of light into a small solid angle Ω. Previ-
ous work [Steinberg and Yan 2021a] considered a beam emitted by
the entire source, however for larger sources this leads to a pair of
issues: (i) beams are traced from the centre of the source only, lead-
ing to paraxial errors; and (ii) beams might be highly-incoherent.
The second point is an issues as our importance sampling method
requires a global lower bound on the light’s spatial coherence. Our
approach ismore physically plausible and eliminates both problems
with virtually no downside.

Spontaneous emission sources give rise to randomly polarized
radiation, viz. 𝐿𝑥 = 𝐿𝑦 and 𝜍 = 𝜒 = 0. The shape matrices arise
directly via the Hessian of the Fourier transform relation described
by the VCZ theorem [Steinberg and Yan 2021b]:

𝚯𝑥,𝑦 =


𝑟 2

𝑘2
2πΩ
𝐴

𝑟 2

𝑘2
2πΩ
𝐴

𝜎2𝑧𝑧

 , (25)
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Fig. 7. Illustration of wBSDF importance sampling procedure. The scatter-
ing wBSDFWscat, plotted in orange, depends on the coherence properties
of light and can not be evaluated when these properties are unknown (e.g.,
when tracing paths from the sensor). However, as the spatial coherence
area grows on propagation and passive optical elements may not induce
decoherence (Eq. (13)), in practice, a reasonable lower bound on the spa-
tial coherence can be set. This gives rise to the maximally-incoherent wB-
SDF WMInc, plotted in purple, which is coherence-independent—a classi-
cal pBSDF—and can be importance sampled. The difference between these
wBSDFs captures the high-frequency details and is denoted W̃ , with its
absolute value is plotted in blue.

and we may verify that the coherence area grows linearly with the
beam cross section (in line withTheorem 3.2), while radiation from
what may be understood as an idealised point source, at the limit
𝐴 → 0, indeed gives rise to perfectly coherent radiation. Never-
theless, the underlying Fourier optics assumption mandates that
𝐴 � 𝜆2, and our assumption that Ω dictates the cross-sectional
area of the beam implies that Ω ≳ 𝐴. The 𝑟2/𝑘2 term above is the
leading factor of the leading principal minors 𝜽 , as in Eq. (12).

Only the ratio Ω/𝐴 enters our equations: Unreasonably large
values of Ω/𝐴 imply that Ω is too large (hence the beam’s cross-
sectional area becomes too large) or 𝐴 is too small (and we trace
from very tiny radiators), either way coherence is overestimated
leading to wave-ensemble aliasing (see Subsection 3.2). Neverthe-
less, the rendering will correctly converge (but slowly), as the ef-
fects of spatial coherence will be reproduced by sampling enough
points on the source. On the other hand, unreasonably small val-
ues of Ω/𝐴 imply that 𝐴 is too large, giving rise to paraxial errors
and incorrectly underestimating the spatial coherence. Our frame-
work is robust: noticeable changes in performance require order-
of-magnitude chances in Ω/𝐴.

For typical artificial light sources, we choose 𝐴 = 1mm2 and
Ω = 10−6. For sunlight, we set Ω/𝐴 = 𝑑−2sun𝜎sun, where 𝑑sun is
the distance to the sun and 𝜎sun ≈ 502µm2 is the sunlight’s spatial
coherence variance on earth. Note that 𝑟 ≈ 𝑑sun (the light’s distance
of propagation once it arrives on earth) and that Ω/𝐴 is multiplied
by the 𝑟2/𝑘2 term, leading to characteristic lengths of coherence
after propagation of ∼ 𝜎sun, as desired. Similarly for other distant
sources. These are fairly reasonable values that should fit a wide-
range of different scenes.

Path tracing. For light sourced from artificial sources, the above
implies that after 1m of propagation, the beam’s cross-sectional
area is ∼ 1mm2. This is a tiny area, therefore we do not need to
employ fully-fledged beam tracing, instead, for the purpose of prop-
agating our beams throughout the scene, we treat these beams as
rays and perform typical ray tracing. Classical light transport aims
to solve the rendering equation, and PLT admits a modified trans-
port equation (see Steinberg and Yan [2021a, Definition 4.1]) that
governs the propagation of the generalized radiance at an interface
between media:

L
↔ [𝝁𝑜] =

∫
𝔖2

+
d2𝒔 W

{
L
↔ [𝝁𝑖]

}
𝒔 · �̂� , (26)

where𝔖2
+ denotes the unit hemisphere and �̂� is the normal to the

interface. Extension of the above to participating media has been
done as well [Steinberg and Yan 2021a]. Due to the linearity of the
diffraction operator and Eq. (10), we note that d2𝒔W{L↔ [𝝁𝑖]}𝒔 · �̂� =
d2W{S

↔ [𝝁𝑖]}. Finally, beams that take different paths through the
scene are essentially always mutually incoherent: the characteris-
tic length of spatial coherence of light from spontaneous emission
sources is, at most, on the order of hundreds of micrometres. There-
fore, Property 3.2 applies and distinct beams superpose linearly, en-
abling Monte-Carlo integration of the transport equation (Eq. (26)).

Our renderer performs spectral rendering with 16 spectral sam-
ples. Physical optics light-matter are heavily frequency dependent,
furthermore to reproduce temporal coherence effects we need to
accurately sample the spectrum of light (see Subsection 3.2). We
stress again that temporal coherence effects are reproduced by our
framework, at no additional cost, simply by sampling the spectrum
of light. This is due to the spectral decomposition we employ (as
discussed in Subsection 3.2). The parameter 𝜎𝑧𝑧 only serves to limit
the spatial coherence of light to a reasonable extent in the direc-
tion of propagation. We set 𝜎𝑧𝑧 = 1mm constant throughout. As
expected, only order-of-magnitude changes in 𝜎𝑧𝑧 have any impact
on performance.

Importance sampling. The problem of importance sampling re-
duces to importance sampling the maximally-incoherent wBSDF
W̃ , which, as discussed in Subsection 3.5, acts as a classical pB-
SDF. For simplicity, our implementation ignores polarization dur-
ing importance sampling and samples the scalar mean scattering
intensity of W̃ , viz. cos𝜗𝑜𝑚00D{𝜎min𝑰 }, where 𝜎min is the global
lower bound on the spatial coherence variance.We set𝜎min to equal
the spatial coherence variance of light after a short propagation of
𝑟 = 10 cm, i.e. 𝜎min = 𝑟2𝜆2min

Ω
2π𝐴 , with 𝜆min being the shortest

wavelength that we render with (this follows from Definition 3.1
and Eq. (25)). Then, importance sampling is done by sampling the
material-specific𝑚00 and the convolved PSD, and we discuss it fur-
ther in Subsection 4.1.

Note, in our implementationwe sample with respect to the scalar
maximally-incoherent wBSDF both backward and forward paths.
This is done for simplicity, as we may ignore coherence and po-
larization entirely when tracing paths. Only once a complete path,
light source to sensor, is found, we evaluate it by applying the full
vectorized, coherence-aware formalism presented. This works for
the vast majority of materials, because the maximally-incoherent
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wBSDF provides a good approximation to the actual scattering wB-
SDF (see Fig. 7), however for some specificmaterials, like diffraction
grating, which are highly coherence-sensitive, a better implemen-
tation would put the knowledge of the light’s coherence properties
to better use, when tracing forward paths.

4.1 Materials
We discuss the materials that were rendered in this paper.

4.1.1 Surfaces with varying-degrees of roughness. Let a wide-sense-
stationary statistical surface be described by the Gaussian autocor-
relation function r (®𝒅) = 𝑞2g𝜎

2
𝑠 (®𝒅) , with ®𝒅 ∈ R2 a distance on the

surface, 𝑞 then becomes the root-mean-square (rms) roughness (as
in Eq. (61)) and 𝜎𝑠 is the surface’s correlation length. The PSD of
the surface arises immediately via Eq. (62) (and Lemma S2.1 in the
supplemental material):

p
(
®𝜻
)
=ℱ

{
r
} (®𝜻 ) = 𝑞2𝜎2𝑠 g𝜎

−2
𝑠

(
®𝜻
)
. (27)

It is well-known that the probability density function of a sum of
independent random variables is the convolution of their respec-
tive probability density functions—a fact that, in general, may facil-
itate finding analytic closed-form solutions or approximations to
the diffraction operator in Eq. (15). For our surface, the diffraction
operator is then simply

D{ΣΣΣ} = 𝑞2

2π

��ΣΣΣ−1 + 𝜎−2𝑠 𝑰
��−1/2

gΣΣΣ
−1+𝜎−2

𝑠 𝑰
(
®𝒉
)
, (28)

with ΣΣΣ is restricted to the 2×2-dimensional case (i.e. we extract the
leading principal minor of ΣΣΣ). We also require the (direction- and
wavelength-dependent) relative roughness, defined in Eq. (63). For
simplicity, and because for a Gaussian surface the integral over the
entire surface approximates the band-limited integral in Eq. (63)
very well for non-grazing angles, we set 𝑞rel = 𝑞.

The scattering pBSDF that enters Eq. (16) for the surface is the
Mueller form of the Fresnel relations, viz.:

𝑴 [𝝁𝑖]→[𝝁𝑠𝑝] ≜
1

𝜆2


𝑚00 𝑚01
𝑚01 𝑚00

𝑚22 𝑚23
−𝑚23 𝑚22

𝑻
[𝝁𝑖]→[𝝁𝑠𝑝] ,

with 𝑚00 =

��f𝑝𝑝 ��2 + ��f𝑠𝑠 ��2
2

, 𝑚01 =

��f𝑝𝑝 ��2 − ��f𝑠𝑠 ��2
2

,

𝑚22 = Re
{
f𝑠𝑠 f ★𝑝𝑝

}
and 𝑚23 = Im

{
f𝑠𝑠 f ★𝑝𝑝

}
, (29)

where the exit reference frame [𝝁𝑠𝑝] is defined as the standard s-
and p-polarization frame: �̂� is perpendicular to both 𝒓 and 𝒔 and �̂�
lies in the plane spanned by 𝒓 and 𝒔; 𝑻 is the Mueller rotation ma-
trix that rotates from the (arbitrary) incident frame to the sp frame
(see Eq. (59) for an explicit definition). The quantities f𝑠𝑠 , f𝑝𝑝 are
the well-known reflection or refraction Fresnel coefficients, which
depend on the relative normal vector (the geometric half vector be-
tween 𝒓 and 𝒔 in the case of reflective scattering) and on the relative
ratio of the refractive indices of the media, denoted 𝜂 (which might
be complex and is typically wavelength-dependent). The direct pB-
SDF that enters Eq. (21) is also as in Eq. (29), however it is restricted

to the typical specular lobes: perfect reflection and perfect refrac-
tion. The Hessians of the pBSDF are then (by applying Eq. (57))

�̃�𝑥 =
d2

d®𝒓 ′2
��f𝑝𝑝 ��2����

�̂�,�̂�+®𝒓 ′
and �̃� 𝑦 =

d2

d®𝒓 ′2
��f𝑠𝑠 ��2����

�̂�,�̂�+®𝒓 ′
, (30)

which we compute numerically, as discussed in Subsection 3.5.
Finally, we need to importance sample the envelope scattering

wBSDF (Eq. (23)), which requires importance sampling the diffrac-
tion operator with ΣΣΣ = 𝜎min𝑰 . Because the variance matrix that
enters the multivariate anisotropic Gaussian in Eq. (28) is now di-
agonal, this Equation becomes

D{𝜎min𝑰 } =
𝑞2

2π𝑤
g𝑤 (ℎ𝑥 ) g𝑤

(
ℎ𝑦

)
, (31)

with𝑤 = 𝜎−1min +𝜎
−2
𝑠 the effective standard deviation. Therefore, we

importance sample each univariate Gaussian above, which reduces
to evaluating the inverse error function (see Winitzki [2003] for a
numeric routine), yielding an outgoing direction 𝒓 . If the surface is
transmissive, then we also importance sample a reflective or refrac-
tive scattering interaction, with respect to the surface’s reflectivity.
For simplicity, we do not importance sample the pBSDF𝑴 [𝝁𝑖]→[𝝁𝑠𝑝] ,
as the distribution of scattered power is dominated by the PSD. See
our implementation.

The presented surface model is parametrized by the roughness
𝑞, the correlation length 𝜎2𝑠 (which, in term of optical response,
inversely modulates the length of the “tail” of the highlight) as
well as the wavelength-dependent refractive index 𝜂. This model
is fully coherence-aware, and is easy to importance sample in a bi-
directional path tracer. Nevertheless, real surfaces are rarely Gauss-
ian, and typically their PSD admits a more “fractal” structure with a
longer tail (more pronounced higher spatial frequencies). Deriving
expressions for more realistic surface models is possible (as effec-
tively the problem reduces to deriving closed-form expressions for
the well-behaved diffraction operator Eq. (15) and importance sam-
pling it), and is left for future work.

4.1.2 Perfectly-diffuse surfaces. Aperfectly-diffuse surface is a spe-
cial case of the rough surface discussed above, and can be under-
stood at the infinite roughness and zero correlation length limit, viz.
𝑞 → ∞ and 𝜎𝑠 → 0 simultaneously. Then, Eqs. (27) and (28) reduce
to p = D = 1. No direct contributions arise, therefore 𝛼direct = 0.
The scattering pBSDF of a perfectly-diffuse surface is

𝑴 [𝝁𝑖]→[𝝁𝑠𝑝] ≜
𝑚00

π𝜆2
𝑻 [𝝁𝑖]→[𝝁𝑠𝑝] , (32)

where 0 ≤ 𝑚00 ≤ 1 is themean scattering intensity, 𝑻 is theMueller
rotation matrix, as before, and we normalize by 1/π.

4.1.3 Diffraction grating. We use a similar formulation to Stein-
berg and Yan [2021b]. Consider a (perfect) sinusoidal phase grat-
ing, with pitch (period) Λ and grating height of 𝑏, residing on an
infinite plane. Assume that the reflectivity is constant over the en-
tire surface, hence the pBSDF is the same Fresnel Mueller matrix
as in Eq. (29). The complex transmission function for a plane wave
incident at angle 𝜗𝑖 is well-known [Born and Wolf 1999]:

𝜙 (𝑥) ≜ exp
[
i𝑘 𝑏

2 cos𝜗𝑖 cos𝜗𝑜
sin

(
2π

𝑥

Λ

)]
, (33)
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(2)(1)

no polaRization filteR polaRization filteR

(b) Renderings of a close-up view of the bicycle’s rear wheel assembly

Fig. 8. (left) Real photos of a road bicycle’s rear wheel assembly. (a6) The translucent spoke guard is made of moulded plastic and admits a significant
degree of birefringence. (a7) The brake surface on the Giant S-R3 wheel is a made of an aluminium alloy with a grated surface that (a5) acts as a diffraction
grating. (a1) When illuminated by sunlight and viewed through a polarization filter (sunglasses), visible birefringence-induced iridescence arises on the spoke
guard, while the wheel disperses the light and diffraction gratings patterns are visible on ground. (a2) Same conditions but without a polarization filter: the
iridescence on the spoke guard disappears almost entirely. (a3-4) In place of sunlight, a powerful artificial LED light source generates rather weakly-coherent
incident light. With and without a polarization filter. The diffraction grating patterns disappear entirely, but, (a3) when viewed through a polarization filter,
weak birefringent effects are still visible. (right) We render a similar close-up of a rear wheel assembly, (b2) with and (b1) without a polarization filter. The
birefringence-induced iridescence on the spoke guard is high polarization sensitive, but the diffraction grating patterns are unaffected.

which quantifies the phase difference of the scattered wave due
to the height differences across the grating, with 𝑥 being the posi-
tion on the grating. Applying the well-known identity of the Bessel
function of the first kind, viz. ei𝜐 sin𝜑 =

∑∞
𝑛=−∞ 𝐽𝑛 (𝜐)ei𝑛𝜑 , serves to

rewrite the transmission function 𝜙 as a Fourier series with coeffi-
cients 𝐽𝑛 (𝜐). The PSD of a Fourier series is a series of Dirac deltas:

p(𝜁 ) =
∞∑

𝑛=−∞
𝐽𝑛
(
𝑘 𝑏
2 cos𝜗𝑖 cos𝜗𝑜

)2
𝛿
(
𝜁 − 2π

𝑛

Λ

)
. (34)

Evaluated at 𝜁 = 𝑘 (sin𝜗𝑜 + sin𝜗𝑖 ), i.e. the projection of ®𝒉 (as de-
fined in Eq. (14)) onto the grating axis, the PSD of the grating above
reproduces the known relation [Born and Wolf 1999]:

sin𝜗𝑜 + sin𝜗𝑖 =
𝑛

Λ
𝜆 , (35)

which governs the scattering angle of lobe 𝑛 at wavenumber 𝑘 . The
intensity of each lobe is given by the Bessel function in Eq. (34).

Clearly, the DC lobe 𝑛 = 0 (the direct, non-diffracted lobe) scat-
ters at 𝜗𝑖 = 𝜗𝑜 , regardless of wavelength. The diffraction lobes,
𝑛 ≠ 0, scatter at an angle that is wavelength dependent. The convo-
lution of the PSD with the coherence Gaussian, viz. Eq. (15), is then
a series of Gaussians, where the variance matrix is the shape matrix

of the spatial coherence of light, and with the mean of each Gauss-
ian centred at the respective lobe. In practice, we restrict the ren-
dered lobes such that |𝑛 | ≤ 𝑁 . Importance sampling then reduces
to choosing a lobe, uniformly at random, from these 2𝑁 diffraction
lobes as well as 1 DC lobe, and sampling the Gaussian of that lobe. It
is important to note that the lobes generally overlap, which should
be taken into account when calculating the probability density of
the chosen importance sample. As all lobes are specular, �̃�𝑥,𝑦 = 𝑰 .

With moderately-coherent light, like sunlight, these lobe Gaus-
sians have very low variance. Indeed, a diffraction grating describes
the most difficult kind of a material to importance sample: A multi-
tude of Dirac lobes, with each restricted to a single wavelength and
carrying only a small fraction of energy. See Fig. 8a for photos of a
diffraction grating dispersing light.

4.1.4 Birefringent dielectrics. Birefringence is an optical phenome-
non, where the permittivity of the matter admits spatial anisotropy,
i.e., it depends on the direction of incidence. Birefringent dielectrics
are quantified by a pair of refractive-indices, an ordinary 𝜂𝑜 and an
extraordinary 𝜂𝑒 , as well as an optic axis, that describes the distin-
guished direction in the material around which anisotropy is in-
duced. As light refracts into such a material, the beam splits into
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(a) (b)

Fig. 9. Real photos of a glass window pane, (a) with a polarization filter and
(b) without. In a similar manner to the birefringent bicycle spoke guard,
when viewed through a polarization filter, the glass window appears iri-
descent. We reproduce this interaction between the polarimetric and wave
properties of light on the glass window in the rendered Figs. 1 and 10.

Fig. 10. The bicycle scene from Fig. 1 rendered with indoor lighting that
consists of a pair of 3900 K halogen bulbs, as well as late evening sky. Also
viewed through a polarization filter. These light give rise to radiation that
far less coherent than sunlight, therefore the (red close-up) diffraction grat-
ing patterns disappear entirely. (blue close-up) The birefringence effects on
the windows also diminish, but remain slightly visible.

a pair of beams, an ordinary beam, which refracts with respect to
𝜂𝑜 , and an extraordinary beam, which encounters a refractive-index
between 𝜂𝑜 and 𝜂𝑒 , depending on orientation. Once refracted out of
the birefringentmaterial, both beams encounter the same refractive-
index of the external medium, and recombine. The difference in the
optical path length travelled by these beams induces diffraction ef-
fects, which are known as birefringence-induced iridescence.

Birefringent dielectrics are implemented as thin dielectric slabs,
with given thickness and with the surfaces being Gaussian surfaces
of arbitrary roughness. The transport through the slab is then eval-
uated atomically, with no ray tracing performed inside the slab.
Rendering is done similarly to a rough dielectric, Subsection 4.1.1,

and importance sampling remains unchanged. To compute birefrin-
gence, we use the framework developed by Steinberg [2019]. In
place of the typical (isotropic) Fresnel coefficients in the pBSDF, we
use the anisotropic Fresnel coefficients (see Steinberg [2019, sup-
plemental] for a derivation). As the pair of beams refract out of the
slab, we superpose them, with respect to an interference term that
arises from the computed optical path difference. That interference
term is modulated by the mutual coherence, i.e. the light’s coher-
ence Gaussian evaluated at the (mean) spatial distance between the
ordinary and extraordinary beams.The Hessians of the pBSDF take
the same form as with a rough surface, Eq. (30).

As the ordinary and extraordinary beams diverge only by a small
amount, a birefringent dielectric is less sensitive to the spatial co-
herence of light, compared with a diffraction grating. On the other
hand, the appearance of a birefringent dielectric depends heavily
on the polarization properties of light. See Fig. 8a for a photo of
such optical effect.

5 RESULTS
In contrast to previous PLT work, we are able to render complex
scenes, where all the materials are the coherence-aware physical
opticsmaterials thatwere developed and discussed in Subsection 4.1.
We are able to trace light beams of arbitrary spectrum, polarization
and spatial coherence area, volume and anisotropy.

We render a bicycle that contains two surfaces with interesting
diffractive properties: A birefringent plastic spoke guard and a alu-
minium wheel brake surface that acts as a diffraction grating. See
Figs. 8a and 9 for photos of these materials. These effects are sen-
sitive to the polarimetric and coherence properties of light: The
glass panes and plastic bicycle spoke guard in Figs. 1 and 8b are
birefringent and appear iridescent, with the effect most stark when
viewed through cross polarizers, i.e., when polarized incident light
(which arises on, e.g., reflection of a surface or the sky) transmits
through the birefringent sample and then is passed through a po-
larization filter (like sunglasses). Our renderer reproduces these ef-
fects accurately, see Fig. 8b. As discussed in Subsection 4.1.4, subtle
birefringence-induced iridescence may even when light is weakly-
coherent. This effect is captured in the photos in Figs. 8a and 9 and
reproduced by our framework in Fig. 10, where the bicycle scene
is rendered at night with lighting dominated by weakly-coherent
indoor halogen bulbs.

On the other hand, a diffraction grating is not sensitive to the
polarization of light, but is highly coherence sensitive, as it scatters
into many diffracted Dirac delta lobes. The metal brake surface on
the Giant S-R3 bicycle wheel acts as a lateral diffraction grating
(see Fig. 8a).This effect is readily visible whenmoderately-coherent
sunlight is incident upon that surface, but disappears entirely with
weakly-coherent light. We reproduce these optical phenomena in
Figs. 8b and 10. See our supplemental material for full-resolution
photographs, as well as high-resolution renderings. The diffraction
grating surface gives rise to 6 diffraction lobes (|𝑛 | ≤ 3, with 𝑛
as in Subsection 4.1.3), with each lobes consisting of 16 dispersed
lobes (one for each spectral sample). Togetherwith theDC lobe, this
amounts to 97 distinct lobes, which are highly coherence sensitive
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𝐿 = 0.60 cm 𝐿 = 2.40 cm 𝐿 = 7.50 cm

Fig. 11. Comparison with the “twin scarab” scene form Steinberg and Yan [2021b]. The scene, illuminated by a cylindrical fluorescent light source of length
𝐿, was rendered using our framework with different light source sizes, leading to (left to right) strongly-coherent, moderately-coherent and weakly-coherent
radiation incident upon the scarabs. The large scarab’s wings are coated with a 3 µm perfectly smooth dielectric, resulting in visible interference effects. A
mirror is placed on the right-hand side of the scene, reflecting light towards the scarabs. Light that arrives from the mirror has propagated farther, thus
is more coherent, and more pronounced interference effects are visible on the right wing. (insets) Same scene rendered using Steinberg and Yan [2021b]
framework. The material appearance between the renderings is not expected to match, as the material models are different (see Section 5), however the
interference patterns match very well.

Twin scaRabs

4spp 8spp 64spp 256spp 1024spp

4spp 8spp 64spp 256spp 1024spp 10000spp

ours
Steinberg

&
Yan

Fig. 12. Analysis of convergence performance. The modified “twin scarabs” scene (see Section 5 for details) is rendered by our framework as well as by the
framework of Steinberg and Yan [2021b]. The small images are close-ups and are rendered with (left to right) an increasing count of samples-per-pixel (spp).
Difference in material appearance is expected as the material models differ between the frameworks. The rendering times for the 1024spp images are 38.4
minutes and 9.8 minutes for ours and Steinberg and Yan [2021b], respectively. The greater time per sample for our framework is to be expected as we perform
fully vectorized light transport that accounts for polarization, while theirs is a scalar renderer. The 10k spp image took 91 minutes of rendering time by their
framework, however considerable noise is till present. Our framework approaches a converged rendering at 1024spp.

and hence are difficult to importance sample, making rendering the
scenes in Figs. 1, 8b and 10 challenging.

We compare our framework against Steinberg and Yan [2021b].
To be able to render scenes with some complexity, most of the
materials that they render are classical microfacet surfaces, ren-
dered and sampled classically. For the materials that admit diffrac-
tive behaviour, they manually fit a microfacet “envelope” that is
used for importance sampling. The transformation of the incident
light’s coherence function in Hermite-Gauss space on interaction
with matter is pre-computed for each Hermite-Gauss mode. This
approach is (i) cumbersome, as it requires manual tuning and pre-
computation for each distinct material; and (ii) inaccurate, as with

weakly-coherent light that microfacet envelope might not suffice
(unless a global lower bound on the light’s coherence is ensured, as
done by us). Our new materials are devoid of such issues. We ren-
der their “twin scarab” scene that includes coherence-dependent
thin-film interference effects, and compare against their renderings,
see Fig. 11. Slight differences in material appearance are to be ex-
pected, but we show that the interference patterns are precisely re-
produced, suggesting that our coherence transport is accurate. The
“twin scarab” scene contains a perfect mirror and the materials are
mostly either diffuse or low-roughness conductors. To study con-
vergence, we modify the “twin scarab” scene slightly in order in-
crease the complexity of the light transport: we make the mirror
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Night 5 s 16 s 1min 1 s 3min 56 s 15min 45 s
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ReaR wheel 4 s 12 s 42 s 2min 47 s 10min 38 s 90min 40 s
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Fig. 13. Analysis of convergence performance. We compare our framework against scalar, radiometric renderer (Mitsuba 0.6, using the bdpt integrator). Both
renderers use 16 spectral samples. The small images are equal-time renderings. In these rendered scenes, our framework incurs a cost per sample that is
about twice greater. The diffraction gratings on the wheels’ brake surfaces are slow to converge, as expected, but otherwise equal-quality rendering times of
our framework are at about 3-4 times compared to the scalar, radiometric renderer. Differences in material appearance are expected.

rough, and tweak the materials such that there are surfaces with
a variety of roughnesses. As expected, our framework converges
significantly faster. Note, that even with 10 000 samples-per-pixel,
the state-of-the-art is far from converged and admits significant
noise. Our framework approaches convergence with 1024 samples.
More complicated scenes with more complex materials, as in Figs. 1
and 8b, are impossible to render with the state-of-the-art, in any
reasonable time frame.

Likewise, we also study convergence when compared to a scalar,
radiometric renderer. Specifically, Mitsuba 0.6 with the bdpt inte-
grator with 16 spectral samples. See Fig. 13. We use the night scene
(Fig. 10) and the rear wheel assembly scene (Fig. 8b). These scenes
are more complex than the “twin scarab” scene, hence integration
cost is dominated by ray tracing, and the cost-per-sample of our ren-
derer is about twice compared to the radiometric renderer. Overall,
the convergence rate is roughly 3-4 times slower, see the RMSE
plots in Fig. 14. It should be noted, however, that the slowest to
converge are effects that arise due to the diffraction grating on the
wheels. The radiometric renderer treats this material as a typical
moderately rough conductor, while our renderer samples the 97
diffraction lobes, and the majority of the noise is induced by this
material (this can be seen qualitatively in Fig. 13). Our renderer is
also fully vectorized. The rendering times for all the scenes in this
paper are listed in Table 2.
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Fig. 14. Convergence performance of our framework compared against the
scalar, radiometric renderer. (top) RMSE values as functions of rendering
time for the (blue) “night” and (red) “bicycle rear wheel” scenes from Fig. 13,
both when rendered under (dotted) RLT and our (solid) PLT method; and
(bottom) the differences between the methods (log-log plot).

6 DISCUSSION AND CONCLUSION
The coupling relation between the incident and scattered princi-
pal modes, quantified by Eq. (13), is a hard physical limit for pas-
sive optical elements set by previous work [Zhang et al. 2019]. We
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Table 2. Rendering runtimes of our framework for the scenes that appear
in the paper. Rendering was done on an AMD® Ryzen™ 5990X 64-core CPU
(the “twin scarabs” scene was rendered on a AMD® Ryzen™ 9 5950X CPU).

Scene Samples Rendering time

Bicycle day
(3125 × 2000)

Fig. 1 150k 43 h 40min

Bicycle night
(2100 × 2100)

Fig. 10 90k 17 h 30min

Rear wheel
(2150 × 2150)

Fig. 8b 90k 18 h 50min

Twin scarabs
(1800 × 1200)

Fig. 11 8196 3 h 36min

build upon that by noting that engineered materials that admit sig-
nificant mode-specific absorption require very careful photonic en-
gineering of material structuring. The assumption that the materi-
als that we encounter and wish to render are not structured, i.e.
are mode-agnostic, follows. Then, the conservation of spatial co-
herence, Theorem 3.2, can intuitively be understood as a form of a
(functional) Central Limit Theorem: if the superposition of the in-
cident optical modes tend to a Gaussian stochastic process, then a
linear transform of these mode is expected to also tend towards a
Gaussian process (because the coupling strengths, i.e. the singular
values of this transform, are mode-agnostic).

By endowing the classical pBSDF with spectral information of
the matter’s scattering characteristics—specifically its power spec-
tral density—we introduce the wave BSDF and show that this infor-
mation is sufficient for physical optics scattering. The derivations
(available in our supplemental material) that lead to the general
formulation of the wBSDF in Eq. (16) are essentially exact, up to
the typical optical far field assumption (which, as mentioned, is
very reasonable for our purposes and field statistics converge to far
field statistics rapidly [Agarwal et al. 2004]). We have introduced a
Gaussian surface model, however real surfaces are rarely Gauss-
ian in their PSD. This means that we do not expect to achieve the
visual fidelity of surface reproduction of, e.g., microfacet surfaces
with a GGX distribution [Walter et al. 2007] (which was designed to
match measured data), as used by the radiometric renderer. How-
ever, the appearance of statistical surfaces is dictated by the first-
order diffractions that arise [Stover 2012]. The microfacet surface
model lacks the ability to describe statistical correlations between
the facets, and that information is needed to diffract light. Further-
more, microfacet surfaces simply do not arise in practice, and it
serves to reason that this model should be superseded. Our wB-
SDF is able to account for these coherence- and frequency-sensitive
diffractions, and we leave designing more expressive surfaces and
material models for future work.

In this paper, we have presented the first practical algorithm for
physical light transport that is consistent with Maxwell’s theory
of electromagnetism and is able to reproduce physically-accurate
wave-interference and diffraction effects at a global scale for com-
plex scenes. To achieve this, we have proposed a new, wave-packet

rendering primitive based on Stokes parameters that can be eas-
ily integrated into a standard rendering system and which gener-
alizes radiometric radiance and irradiance. To enable a simple ana-
lytic representation of a beam, we restrict the coherence shape of
the wave packet to be a simple, anisotropic Gaussian, which we
show using entropy conservation is a reasonable assumption. We
have also presented a novel representation for the BSDFs of mate-
rials to make them coherence-aware so that they interact correctly
with our wave packets, and showed how we can importance sam-
ple them in order to facilitate bi-directional path tracing, with only
minor modifications to the modern offline path tracing pipeline.

We then show how all of these contributions can be integrated
into a standard rendering system to simulate light transport in a
complex scene in a physically accurate manner. In contrast to finite-
difference time-domain (FDTD) approaches that are used in the
physics community to accurately simulateMaxwell’s equations but
require extremely simplified scenes (e.g., a single tiny sphere), or
SBR methods (see Section 2) that do not transport coherence in-
formation, our method works for scenes of the complexity found
in high-end production environments, and yet its performance ap-
proaches that of classical rendering methods. Our method is able to
accurately represent light of arbitrary spectrum, polarization, and
coherence area and volume.

Limitations. Our framework is designed for polychromatic (broad-
spectrum), partially-coherent light of optical frequencies. In this
domain, we are able to leverage, with excellent accuracy:

(1) the short characteristic length of spatial coherence, implying
that distinct beams are mutually-incoherent and superpose
linearly, enabling numeric integration of the transport equa-
tion (Eq. (26));

(2) furthermore, the low spatial coherence allows us to use ray
tracing to propagate our beams, as their cross-sectional area
is comparable to smallest scene geometrical features; and,

(3) the very short temporal coherence of light, meaning that
second-order statistical moments (the CSD function, Eq. (7))
are sufficient to quantify the statistics of a wave ensemble.

The last point arises from the fact that our sensors always time-
average over periods long compared to the temporal coherence of
light. In a different regime of the electromagnetic spectrum, these
assumptions are not as accurate: for example, if we were to ren-
der with frequencies used for W-band radar radiation (over ×1000
longer wavelength than optical), then it is reasonable to assume
that fully-fledged beam tracing would be required for accurate ren-
dering. In addition, at these longer wavelengths, free-space diffrac-
tions become more significant, and can no longer be ignored.

The failure cases of Theorem 3.2 have been discussed in Subsec-
tion 3.4. In a typical scene, where material structuring or materials
with time-varying characteristics are not present, Theorem 3.2 ap-
plies as is. An increase in coherence of a scattered beam can be
simulated in a straightforward manner, though recall that Eq. (13)
dictates that an increase in coherence must always be accompa-
nied by an energy trade-off. Because our importance sampling strat-
egy requires a global lower bound on the light’s spatial coherence,
care should be taken in the rare circumstances where decoherence
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might arise. As mentioned earlier, a possible approach would be to
integrate over the source of entropy that induces decoherence.

Finally, while in this work we have kept 𝐴 and Ω (the beam’s
source area and solid angle, see Eq. (25)) constant throughout, it
is possible to trace beams with different values of Ω/𝐴, as long as
the constraints discussed in Section 4 are met. This would allow
us to correctly trace beams through, for example, lens systems and
pinholes, as long as the global lower bound on spatial coherence is
not violated.
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A GENERALIZED STOKES PARAMETERS RELATIONS
Given generalized Stokes parameters vectorsS

↔ [𝝁],L
↔ [𝝁] , i.e. general-

ized irradiance and radiance, the following relations encode some
useful radiometric and polarimetric properties:

(1) the observed (non-instantaneous) spectral irradiance and ra-
diance are

𝑆 (®𝒓 ; 𝜔) ≜ S [𝝁]
0 (®𝒓, 0 ; 𝜔) , (36)

𝐿(®𝒓 ; 𝜔) ≜ L[𝝁]
0 (®𝒓, 0 ; 𝜔) . (37)

(2) the complex spectral degree-of-coherence is

𝛾
(
®𝒓, ®𝝃 ; 𝜔

)
≜

1

[𝑆 (®𝒓 ; 𝜔)𝑆 (®𝒓 ; 𝜔)]1/2
S [𝝁]
0

(
®𝒓, ®𝝃 ; 𝜔

)
, (38)

with |𝛾 | ≤ 1; and,
(3) the degree of cross-polarization, quantifying how polarized

the radiation is, can be written as

𝓅
(
®𝒓, ®𝝃 ; 𝜔

)
≜ |S [𝝁]

0 | −2
(
|S [𝝁]

1 | 2 + |S [𝝁]
2 | 2 + |S [𝝁]

3 | 2
) 1/2

. (39)

The relations in Eqs. (38) and (39) can also be written in an iden-
tical form using the generalized radiance L

↔ [𝝁] . The last 3 elements
of an (irradiance- or radiance-carrying) generalized Stokes param-
eters vector is a triplet that forms a coordinate on the Poincaré
sphere and quantifies the partition of energy into different states of
polarization. See Born and Wolf [1999] for additional ellipsometric
relations.

B DERIVATION OF DEFINITION 3.1
We outline the derivation that leads to the generalized radiance
with anisotropic Gaussian coherence as defined in Definition 3.1.

Let 𝛼, 𝛽 ∈ {𝑥,𝑦} index the transverse components. Assume〈
𝐸𝛼 (®𝒓1)𝐸★𝛼 (®𝒓2)

〉
𝜔 ∝g𝚯𝛼

(
®𝝃
)
, (40)

i.e. stationary, anisotropic Gaussian spatial coherence with ®𝝃 being
the difference vector between the points ®𝒓1 and ®𝒓2 in the local frame.
This implies that the cross-transverse correlations are〈

𝐸𝛽 (®𝒓1)𝐸★𝛼 (®𝒓2)
〉
𝜔
∝g

𝚯𝛽 +𝚯𝛼
2

(
®𝝃
)
. (41)

The (ensemble-averaged) spectral radiances are

𝐿𝛼 = d
dΩ

〈
𝐸𝛼 (®𝒓)𝐸𝛼 (®𝒓)★

〉
𝜔 , (42)

with Ω a solid angle and ®𝒓 a point on the cross-section of the beam.
Then, the structure of L

↔ [𝝁] in Definition 3.1 follows from Eqs. (7)
and (8).

The expression exp
(
i𝑘𝒓 · ®𝝃

)
≡ exp

(
i𝑘𝜉𝑧

)
is the far-field propa-

gator [Korotkova 2017]. The 𝑟2/𝑘2 factor in the shape matrices is a
consequence of the Van Cittert-Zernike theorem [Mandel andWolf
1995]: the spatial coherence area increases linearly on free-space
propagation and decreases with wavelength. See Steinberg and Yan
[2021a, Supplemental Section 7.1] for an explicit derivation of the
𝑟2/𝑘2 factor.

𝐿𝑥,𝑦 are real-valued, i.e. we ignore an irrelevant constant phase
term. Physical realizability mandates that 𝜒2 + 𝜍2 ≤ 1.

C PROOF OF THEOREM 3.2
Let the incident electric field be 𝐸 (®𝒓, 𝑡) =

∑
𝑗 𝐸 𝑗 (®𝒓, 𝑡), where 𝐸 𝑗

are the 𝑁 principal modes of the input. These principal modes are
mutually-incoherent but perfectly self-coherent. Formally, this can
be written as

〈
𝐸 𝑗 (®𝒓1, 𝑡)𝐸𝑙 (®𝒓2, 𝑡)★

〉
= 𝛿 𝑗𝑙𝑎 𝑗 (®𝒓1, ®𝒓2) with 𝛿 𝑗𝑙 being

the Kronecker delta and𝑎 𝑗 being the time-averagedmutual-intensity
of mode 𝑗 . We may write these modes in vector form as

®E ≜ 𝐸1 𝐸2 . . . 𝐸𝑁 ⊺ . (43)
A decomposition into principal mutually-incoherent but perfectly
self-coherent modes is always possible, and is simply a restatement
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of the fact thatMaxwell’s equations are linear. See Fig. 4 for a simple
example of such decomposition.

Scattering by a linear, passive optical element is then formalised
by an operator T that acts upon ®E . This operator is necessary lin-
ear, finite and compact [Miller 2012]. Furthermore, as we neglect
all non-optical output modes and, based on our discussion in Sub-
section 3.4, assume no perfectly absorbed modes, it must follow
that T ∈ C𝑁×𝑁 and is full rank. Its singular value decomposition
(SVD) is then T = 𝑼𝛴𝛴𝛴𝑽†, with 𝑼 , 𝑽 unitary and a diagonal matrix
of singular values 𝛴𝛴𝛴 = diag {𝜍1, 𝜍2, . . . , 𝜍𝑁 }. Then, the 𝑀opt = 𝑁
output (optical) modes are then

®E ′ ≜ T ®E . (44)

The total scattered electric field is then the sum of the scattered
modes, viz.

𝐸 ′ = ®1
⊺ ®E ′ . (45)

where ®1 is the vector of all 1-s.
We understand an optical element that scatters in amode-agonistic

manner as an element where T admits constant modal coupling
coefficients, but the cross-modal coupling can be random. That is,
all the singular values are constant 𝜍 𝑗 ≡ 𝜍 ∈ C and the coupling
power quantified by these singular values is simply the differential
scattering power cross-section (i.e. the classical BSDFmultiplied by
a solid angle factor):

|𝜎 | 2 ≡ dΦ(o)

dΦ(i)
, (46)

with Φ denoting spectral flux. The constant 𝜍 can be understood
as the expected value over the entire area of the beam’s interac-
tion with the matter. The cross-modal coupling is described by the
unitary transformations 𝑼 , 𝑽 , which are random unitary matrices
(circular unitary ensemble members) and are independent of the in-
put modes. That is, 〈𝑼 〉 = 𝑼 , with the ensemble average taken over
all realizations of the incident field, and similarly for 𝑽 .

Consider the cross-spectral density function (as defined in Eq. (7))
of the scattered beam. Directly from Eqs. (44) and (45), it is easy to
see that〈

𝐸 ′(®𝒓1, 𝑡)𝐸 ′(®𝒓2, 𝑡)★
〉
= ®1
⊺
T

〈
®E (®𝒓1, 𝑡) ®E (®𝒓2, 𝑡)†

〉
T †®1 . (47)

Denoting the unitary transform𝑾 = 𝑼𝑽 † and taking the expected
value (over all possible unitary couplings 𝑾 ) of the CSD above,
yields:

E
[〈
𝐸 ′(®𝒓1, 𝑡)𝐸 ′(®𝒓2, 𝑡)★

〉]
=

1

|𝜍 |2
∑
𝑖, 𝑗,𝑘

E
[
𝑊𝑖 𝑗𝑊

★
𝑘 𝑗

] 〈
𝐸 𝑗 (®𝒓1, 𝑡)𝐸 𝑗 (®𝒓2, 𝑡)★

〉
, (48)

with𝑊𝑖 𝑗 being the elements of 𝑾 . Holding 𝑗 fixed, the sum over
the indices 𝑖, 𝑘 above is a product of the column-sum (of column
𝑗 ) with itself. By the unitarity of 𝑾 , the column are complex unit
vectors. Using the well-known fact that a random unit vector can
be written as a normalized 𝑁 -variate normally distributed vector,
viz.𝑊𝑖 𝑗 = 1

( |𝑋1 |2+|𝑋2 |2+...+|𝑋𝑁 |2) 1/2𝑋𝑖 with 𝑋𝑖 ∼ NC (0, 1) (complex

normal distribution), we write

E
[
𝑊𝑖 𝑗𝑊

★
𝑘 𝑗

]
= E

[
𝑋𝑖𝑋

★
𝑘

|𝑋1 | 2 + |𝑋2 | 2 + . . . + |𝑋𝑁 | 2

]
−→

{
1
𝑁 if 𝑖 = 𝑘

0 otherwise
,

(49)

with rapid convergence as 𝑁 increases (note that the 𝑋 depend on
the column, i.e. on 𝑗 ). Therefore, Eq. (48) reduces to

E
[〈
𝐸 ′(®𝒓1, 𝑡)𝐸 ′(®𝒓2, 𝑡)★

〉]
=

1

|𝜍 |2
∑
𝑖, 𝑗

1
𝑁

〈
𝐸 𝑗 (®𝒓1, 𝑡)𝐸 𝑗 (®𝒓2, 𝑡)★

〉
=

1

|𝜍 |2
〈
®E (®𝒓1, 𝑡) ®E (®𝒓2, 𝑡)†

〉
, (50)

where the second equality follows from the definition of ®E . The
fact that 〈𝐸𝑙 (®𝒓1, 𝑡)𝐸𝑛 (®𝒓2, 𝑡)★〉 = 𝛿𝑙𝑛 , by the mutual-incoherence of
the incident modes, means that 〈 ®E ®E †〉 = 〈𝐸𝐸★〉 is the CSD of the
incident beam. We conclude that the CSD of the input and the (ex-
pected) CSD of the output are related via a constant |𝜍 | 2 factor.

D DECOMPOSITION OF THE PBSDF
In this appendix we discuss the decomposition of a non-singular
Mueller matrix, i.e. 𝑴Δ𝑝 ≡ 𝑰 . For general forward decomposition
see Pérez and Ossikovski [2016, Ch. 8.2.2].

By definition, the diattenuator 𝑴𝑑 and retarder 𝑴𝑟 take the fol-
lowing forms:

𝑴𝑑 ≜
1 ®𝒅

⊺

®𝒅 𝑫

 𝑴𝑟 ≜
1 𝑹𝑀

 , (51)

where ®𝒅 is the diattenuation vector s.t. |®𝒅 | ≤ 1 and

𝑫 ≜
√
1 − 𝑑2

(
𝑰 − ®𝒅®𝒅

⊺)
+ ®𝒅®𝒅

⊺
(52)

if the diattenuation matrix, with𝑑 = |®𝒅 | as usual.Then, an arbitrary
non-depolarising Mueller matrix 𝑴 can be written as

𝑴 =𝑚00

1 ®𝒅
⊺
𝑹𝑀

®𝒅 �̂�3

 , (53)

with𝑚00�̂�3 being the lower-right 3 × 3 minor of 𝑴 . We may im-
mediately extract the mean intensity coefficient 𝑚00 and the diat-
tenuation vector ®𝒅 from Eq. (53). Then, Eq. (52) yields the matrix 𝑫 ,
and by inverting 𝑫 we get

𝑹𝑀 = 𝑫−1�̂�3 , (54)

thereby completing the decomposition. The inversion of 𝑫 may be
performed via consecutive applications of the Sherman-Morrison
formula: Let

𝑨 ≜
1

√
1 − 𝑑2

(
𝑰 − ®𝒅®𝒅

⊺)−1
=

1
√
1 − 𝑑2

(
𝑰 + 1

1 − 𝑑2
®𝒅®𝒅
⊺
)
. (55)

Then, noting that 𝑨 is symmetric, let ®𝒂 = 𝑨®𝒅 and we get

𝑫−1 = 𝑨 − 𝑎2
(
1 + ®𝒅

⊺
®𝒂
)−1

. (56)
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Computing �̃� . Assuming𝑴 is non-depolarizing, we may rewrite
the formula for the Hessian matrix �̃� (Eqs. (18) and (19)):

�̃�𝑥,𝑦 =
d2

d2®𝒓 ′
®𝑺
⊺
0

[
𝑚00𝑴𝑑

] ����
�̂�, �̂�+®𝒓 ′

®𝑺LHP,LVP

=
d2

d2®𝒓 ′
[𝑚00 ±𝑚10]

����
�̂�, �̂�+®𝒓 ′

, (57)

where𝑚10 =𝑚00𝑑𝑥 is the element in the second row, first column
of 𝑴 .

Mueller rotation matrix. Finally, we define the Mueller rotation
matrix between a pair of reference frames. Let {�̂�, �̂�} and {�̂� ′, �̂�′}
be the incident and scattered, respectively, transverse bases, and let

�̂� ′⊥ ≜
�̂� ′ − 𝒔𝒔

⊺
�̂� ′���̂� ′ − 𝒔𝒔
⊺
�̂� ′
�� and �̂�′

⊥ ≜
�̂�′ − 𝒔𝒔

⊺
�̂�′���̂�′ − 𝒔𝒔
⊺
�̂�′�� (58)

be the normalized projections of the scattered transverse basis onto
the incident transverse plane, with −𝒔 being the (mean) direction
of propagation of the incident beam (i.e., the vector normal to the
transverse plane), as before. Let 𝜑𝑧 be the angle between �̂� ′⊥ and
�̂� (in the singular case where �̂� ′ is perpendicular to the incident
transverse plane, we take the angle between �̂�′

⊥ and �̂�). That is, 𝜑𝑧
is the rotation around the 𝑧-axis encoded by 𝑹𝑀 . Then, the Mueller
rotation matrix 𝑻 is defined via

𝑹𝑇 ≜
cos 2𝜑𝑧 − sin 2𝜑𝑧
sin 2𝜑𝑧 cos 2𝜑𝑧

 and 𝑻 ≜ diag {1, 𝑹𝑇 , 1} .
(59)

E THE RELATIVE ROUGHNESS AND THE PSD
Let the spatial function 𝑓 : R3 → R quantify the intrinsic scatter-
ing features of the matter, for example the height field of a surface
or (optical) density of scatterers in a medium. In practice, 𝑓 may
be only known in a limited spatial extent (the scattering region), in
which case we simply understand it as a periodic signal. The auto-
correlation function of that signal is then

r
(
®𝒅
)
≜
∫
R3

d3®𝒓 𝑓
(
®𝒓 + ®𝒅

)
𝑓 (®𝒓) = (2π)

3
2
[
𝑓 (−®𝒓) ∗ 𝑓 (®𝒓)

] (®𝒅) , (60)

where ®𝒅 is a spatial distance. The above definition is with respect
to a deterministic process, if 𝑓 is in fact a stochastic process, then
the typical definition of the autocorrelation function for stochastic
processes is to be used. The root-mean-square (rms) roughness is
then

𝑞 ≜
(∫
R3

d3®𝒓 𝑓 (®𝒓)2
) 1/2

=
√

r (0) , (61)

while the power spectral density of the signal is

p
(
®𝜻
)
≜ℱ

{
r
} (®𝜻 ) , (62)

and it is important to note that the PSD is well defined as a spec-
tral decomposition of the autocorrelation function, even when the
Fourier transform does not exist, by the Wiener-Khinchin theorem.

Eq. (61) can be rewritten using Eq. (62) as 𝑞 = (2π)− 3
4 (
∫

p) 1
2 .

However, note that when evaluating the diffraction operator (de-
fined in Eq. (15)), the frequencies that enter the PSD are ®𝒉 (Eq. (S2.18))
and clearly |®𝒉| ≤ 2𝑘 . Spatial frequencies greater than ∼ 2𝑘 that

arise in the matter then never contribute to the scattered (far-field)
radiation, but only produce evanescent waves. Furthermore, the rel-
ative roughness that is observed from the incident direction 𝒔 con-
sists only of the frequencies that contribute to scattering, i.e. all the
frequencies ®𝒉 = 𝑘 (𝒓 + 𝒔) with fixed 𝒔. Hence, the relative roughness
is the PSD integrated over the k-sphere centred at 𝑘𝒔:

𝑞rel ≜
(
1
2π

) 3
4
(∫

S2
d2𝒓p(𝑘𝒔 + 𝑘𝒓)

) 1/2
, (63)

with S2 denoting the unit sphere.
In the case of a surface, the PSD is a two-dimensional quantity,

i.e. p( ®𝜻 ) ≡ p( ®𝜻⊥) with ®𝜻⊥ being the projection onto the surface.
Therefore, the integral in Eq. (63) reduces in effect to an integral
taken twice over the 𝑘-circle (up to a Jacobian term) in PSD space
centred at 𝑘𝒔⊥: once for positive and once for negative 𝒓 · �̂� (with
�̂� the normal vector), i.e. once for reflected and once for transmit-
ted scattered contributions. If the surface is taken to be a perfect
conductor, then we may assume that transmittance takes no place
and integration is performed over the positive hemisphere only. For
volumetric scatterers, the relative roughness remains rigorously de-
fined as in Eq. (63) and constitutes of a rather sparse portion of the
PSD: a 𝑘-sphere in PSD space, with the important conclusion being
that the vast majority of frequencies do not contribute to scattering.

Eq. (63) is consistent with modern surface scatter literature, how-
ever it ignores the effects of coherence: the PSD is convolved by the
spatial coherence of the incident radiation (Eq. (15)). This serves to
perturb the incident direction 𝒔 by a small amount, hence it is more
accurate to formulate the relative roughness as the contributions
from a thin spherical shell of the𝑘-sphere in PSD spacewith thickness
proportional to the spatial coherence of the incident light. Such a
coherence-aware formulation of relative roughness is left for future
work. We only render surfaces in this work, and, for a surface, in-
tegrating over a thin spherical shell changes little, as the integral is
projected onto the surface anyhow.
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