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In this supplemental manuscript, we derive the relevant properties of the
anisotropic Hermite-Gauss, prove the primary theoretical Lemmas that
appear in the paper and discuss polarization as well as the Wigner-Ville
distribution in Hermite-Gauss space.

S1 THE ANISOTROPIC HERMITE-GAUSS FUNCTIONS
The (univariate) Hermite-Gauss functions are defined as follows:
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for 𝑥 ∈ R, with integer 𝑛 ≥ 0 being the degree and 𝐻𝑛 the Hermite
polynomials. These functions are known to form an orthogonal
and complete basis of scalar 𝐿2 functions [Szegö 1939] and to be
the eigenfunctions of the Fourier transform with the associated
eigenvalues being
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1988].

The anisotropic HG functions were defined in Eq. (5), and we also
write the generating functions of the HG functions and their dual
functions [Takemura and Takeuchi 1988]:∑︁
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which holds for any ®𝒓, ®𝜶 ∈ R3. We now discuss some properties of
the anisotropic HG functions.

Orthogonality and completeness. The anisotropic Hermite-Gauss
functions are mutually orthogonal with respect to their dual func-
tion, viz. 〈

Ψ𝚯

𝑛𝑚𝑙

��� Ψ̃𝚯
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〉
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as well as complete, i.e. if ∀𝑛,𝑚, 𝑙, ⟨Ψ𝚯

𝑛𝑚𝑙
| 𝑓 ⟩ = 0 for some function

𝑓 , then 𝑓 ≡ 0. See Takemura and Takeuchi [1988] for a proof of
orthogonality. Proof of completeness follows the univariate case
(see Hochstadt [1986]).

Fourier transform of the HG functions. To study the Fourier trans-
form of the anisotropic HG functions, we begin with the generating
function (Eq. (S1.2)), take the FT of both sides and perform the vari-
able changes ®𝜷 = 𝚯

−1/2 ®𝜶 and ®𝒔 ′ = 𝚯
−1/2®𝒓 ′, hence d®𝒓 ′ = |𝚯| 1/2 d®𝒔 ′
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(as |𝚯| 1/2 is the Jacobian), in the FT integral, viz.∑︁
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where in the last step we applied the generating function of the dual
HG function identity (Eq. (S1.3)). Equating the powers of ®𝜶 on both
sides above yields the final result:
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Thus, the anisotropic HG functions and their dual serve as Fourier-
transform pairs. We may also conclude that Ψ𝑰

𝑛𝑚𝑙
are the eigen-

functions of the three-dimensional FT, with associated eigenvalues
(2π)3/2 (−i)𝑛+𝑚+𝑙 . We believe the result above is novel.

Special values of the Hermite-Gauss functions. We state, without
proving, a closed-form expression for the anisotropic HG functions
evaluated at 0:
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where 𝚯−1/2 = [𝑞]𝑖 𝑗 , [ 𝜏1,𝜏2,𝜏3 ]⊺ = 𝑻 [ 1,1,1 ]⊺ , i.e the row sums of 𝑻 ,
and !(2) denotes the double factorial. Note that the summation is
over 3 × 3 matrices with natural integer elements, such that the
columns are integer partitions of 𝑛,𝑚, 𝑙 and the row sums are even.

Also, directly from the generating functionwe immediately derive
the following identity:
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𝑛𝑚𝑙
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S2 DERIVATIONS
In this section we perform the derivations of Theorem 3.1 and Lem-
mas 4.3 and 4.4 in the paper.

S2.1 Scattering and Diffraction
We formulate our theory of light-matter interaction under the scalar
diffraction theory, formally formulated via the Huygens-Fresnel
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principle, as follows [Goodman 2017]:

𝑢 (®𝒓) = 1
i𝜆 |𝒓 · �̂�|

∫
X

d2 ®𝒑′
𝑢 ′

(®𝒑′) 1
|®𝒓 − ®𝒑′ | ei𝑘 |®𝒓−®𝒑′ | , (S2.1)

which is a diffraction integral over some planar aperture X ⊂ R3.
𝑢 ′ quantifies the (local) electromagnetic excitations on that aperture
and �̂� is the aperture’s normal (𝑢,𝑢 ′ are treated as deterministic
quantities in this context). This integral should be understood as a
superposition of spherical waves that originate from every point
on the aperture, and it is implied that 𝑟 ≫ 𝜆. See Fig. 3 for an
illustration of the geometry.
Diffraction by planar apertures is of limited interest to applica-

tions in the realm of computer graphics. More practical is a discus-
sion of interaction of light with matter: surfaces and participating
media. To that end, we proceed in a similar manner to Born and
Wolf [1999] to extend the planar aperture X to a scattering volume:
We make the Born first-order approximation, where the electromag-
netic field driving the scattering process inside the volume is the
incident field only. From a physical perspective, this assumption
implies that secondary scattering of the scattered field can be ne-
glected, i.e. the volume scatters weakly with respect to its spatial
extent. For example: if the scattering medium is a metal surface, then
the Born first-order approximation can be understood as neglecting
multiple-scattering by the surface (steep incident and exitance an-
gles are thus ignored); or, if we deal with a participating medium,
like a liquid, then we assume that the (secondary) interactions of
the scattered field with the medium may be neglected.
Nevertheless, it is important to remember that we deal with

partially-coherent light. Hence, the scattering regions are small,
with characteristics lengths on the orders of hundreds of microme-
tres. Repeated interactions between such small, distinct subregions
of a scattering medium (for example, path tracing through a dense
liquid) are possible under our assumptions.
Under the Born first-order approximation, an incident field in-

duces electromagnetic excitations inside a region in a scattering
medium, giving rise to scattered fields. The amplitudes of the scat-
tered fields are quantified by a scattering amplitude function, denoted
𝜎 (𝒔 ′, 𝒓 ′ ; ®𝒑′), which describes the amplitude ratio of the scattered
wave in direction 𝒓 ′, produced due to a scattering event in posi-
tion ®𝒑′ in the medium and under excitation by an incident wave
from direction 𝒔 ′. The scattering amplitude function is, in general,
wavelength dependant and can take complex values, quantifying
the phase-shifts induced by interaction with conducting particles.
We are now ready to formulate a more general diffraction integral:

𝑢 (®𝒓) = 1
i𝜆

∫
R3

d3 ®𝒑′
𝑢 ′

(®𝒓 ′)𝜎 (𝒔 ′, 𝒓 ′ ; ®𝒑′) 1
|®𝒓 − ®𝒑′ | ei𝑘 |®𝒓−®𝒑′ | , (S2.2)

where 𝒓 ′ and 𝒔 ′ are the directions from the integration point ®𝒑′ to
the observation point ®𝒓 and the source ®𝒔, respectively. Note that the
scattering amplitude function implicitly limits the integration to the
spatial extent of the scattering region.
Eq. (S2.2) should be understood as a generalization of Eq. (S2.1)

that is able to describe diffraction by apertures and optical elements,
as well as scattering by surfaces and by inhomogeneous participat-
ing media. The driving assumptions are (i) that the scattering is
dominated by Rayleigh scatterers, i.e. where the scattered waves are

of the same frequency as the incident wave—a good approximation
to virtually all non-fluorescent objects [Born and Wolf 1999]; and,
(ii) the Born first-order approximation.

Cross-spectral density of the diffracted radiation. We turn our at-
tention to studying the CSD of the diffracted radiation and make
the usual Fraunhofer (optical far field) region approximation, imply-
ing that the characteristic length of that scattering region is small
with respect to the distances to ®𝒓 (the observation point) and ®𝒔 (the
radiation source that gives rise to 𝑢 ′). Let a scattering region (as-
sumed to be centred around the origin) be described via a scattering
amplitude function 𝜎 , and C′ be the CSD of the radiation incident
to the scattering region from direction 𝒔. Under the Born first-order
approximation and in the Fraunhofer region, the scattered CSD
becomes

C
(
®𝒓 ; ®𝝃 1, ®𝝃 2 ; 𝜔

)
=

ei𝑘 �̂� ·
(
®𝝃 1−®𝝃 2

)
𝜆2𝑟2 𝒜

{
𝛴 · C′

} (
𝑘𝒓 + 𝑘

𝑟
®𝝃 1, 𝑘𝒓 + 𝑘

𝑟
®𝝃 2
)
,

(S2.3)

where 𝒜 is the angular correlation transform operator (Eq. (3))
and we define 𝛴 ( ®𝝃 1, ®𝝃 2) = 𝜎 ( ®𝝃 1)𝜎★( ®𝝃 2) as the scattering mutual

intensity. The integration of the ACT above is done over the variables
®𝝃 1,2 of 𝛴 and C′.

Proof. Starting with Eq. (S2.2), we proceed in a fashion iden-
tical to the typical Fourier optics derivation of Fraunhofer region
diffraction [Goodman 2017]: In the denominator we may readily
approximate 𝑟 ≈ |®𝒓 − ®𝒑′ | , while a more accurate approximation
is needed in the complex exponent and we power expand via the
square root’s power series, viz.

√
1 + 𝑎 = 1 + 1

2𝑎 + O (
𝑎2) , yielding

|®𝒓 − ®𝒑′ | ≈ 𝑟 − 𝒓 · ®𝒑′
. (S2.4)

Furthermore, we also assume that the scattering amplitude function
𝜎 is a slow function of the directions 𝒔 ′, 𝒓 ′, and thus approximate
𝒔 ′ ≈ 𝒔 and 𝒓 ′ ≈ 𝒓 , i.e. the directions are held constant inside the
scattering region. This assumption holds well in the far field when
𝜎 does not contain very sharp impulses, as would arise by a Dirac
delta reflector (such as a perfect mirror). We discuss how to handle
such matter in the paper.

Then, apply the approximations discussed above to Eq. (S2.2) and
substitute the resulting expression for the field 𝑢 into the definition
of the CSD (Eq. (10)), yielding the Fourier optics relation quantified
in Eq. (S2.3). □

S2.2 Derivation of Lemma 4.3
Start with plugging Definition 4.1 into Eq. (S2.3) and simplifying,
which immediately gives rise to the following relation between the
incident and scattered beams:∑︁
𝑛,𝑚

𝑐𝑛𝑚 Ψ𝚯

𝑛𝑚

(
𝑘𝑸

®𝝃
𝑟
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1
𝑠2𝜆2
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𝑐 ′𝑛′𝑚′

×𝒜

{
𝛴 · Ψ𝚯

′
𝑛′𝑚′

(
𝑘𝑸 ′ ®𝒓 ′1−®𝒓 ′2

𝑠

)} (
®𝝓 + 𝑘 ®𝝃

2𝑟 , ®𝝓 − 𝑘 ®𝝃
2𝑟

)
, (S2.5)

where ®𝒓 ′1,2 are the ACT integration variables, 𝑐𝑛𝑚 , 𝚯 are the HG
transverse modes and shape matrices, respectively (primed values
correspond to the incident CSD and unprimed values to the scattered
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CSD), also defined is the shorthand ®𝝓 = 𝑘 (𝒓 + 𝒔) and recall that
the orthogonal matrices 𝑸,𝑸 ′ transform to the local frame of the
scattered and incident radiation, respectively.
With Eq. (S2.5) as the starting point, we would like to derive an

expression for the coefficients 𝑐𝑛𝑚 . To isolate each coefficient on the
left-hand side in Eq. (S2.5), we take the inner product of both sides
with the dual HG function Ψ̃𝚯

𝑛𝑚 (𝑘𝑸 ®𝝃
𝑟 ). The left-hand side becomes∑︁
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where we first did the variable change ®𝝃 ′′ = 𝑘𝑸
®𝝃 ′

𝑟 in the inner
product, the Jacobian is then | 𝑟

𝑘
𝑸−1 | = ( 𝑟

𝑘
)3 (recall 𝑸 is orthogonal)

and thus d3®𝝃 ′ = ( 𝑟
𝑘
)3 d3®𝝃 ′′. Finally we applied the orthonormality

of the HG function w.r.t. its dual, viz. Eq. (S1.4).
The primary difficulty in the analysis of the right-hand side of

Eq. (S2.5) lies in ACT that appears there, and, for brevity, we denote
that ACT as 𝒻𝑛′𝑚′ , i.e.:

𝒻𝑛′𝑚′
(
®𝝃
)
≜ 𝒜

{
𝛴 · Ψ𝚯

′
𝑛′𝑚′
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)
. (S2.7)

Consider the inner product of that ACT with the same dual HG
function Ψ̃𝚯

𝑛𝑚 (𝑘𝑸 ®𝝃
𝑟 ). By formally interchanging the orders of inte-

grations (i.e., inner product with the ACT), we first take the inner
product of the ACT kernel (see the definition, Eq. (3)) with the dual
HG function, which is a simple FT. The integration then immedi-
ately follows via a variable change as before, the definition of the
dual HG function (Eq. (6)) and an application of the FT of the HG
function identity (Eq. (S1.6)), viz.〈

e−i𝑘𝑟 ®𝝃 ′ · ®𝒓1+®𝒓2
2

���� Ψ̃𝚯
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𝑘

)3
(2π) 3

2 (−i)𝑚+𝑛 Ψ𝚯
−1
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(
𝑸 ®𝒓1+®𝒓2

2

)
. (S2.8)

We are now ready to take the inner product of the right-hand side
of Eq. (S2.5) with the dual HG function (with the added factor of
( 𝑘𝑟 )3 that normalises Eq. (S2.6)—the left-hand side), then formally
interchange the orders of integrations, apply Eq. (S2.8) and simplify,
yielding the transverse HG coefficient:

𝑐𝑛𝑚 =

(
𝑘

𝑟

)3〈 1
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𝑘
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∑︁
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𝑐 ′𝑛′𝑚′
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{
𝛴 · Ψ𝚯

−1
𝑛𝑚
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𝑸 ®𝒓1+®𝒓2

2
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′
𝑛′𝑚′

(
𝑘𝑸 ′ ®𝒓 ′1−®𝒓 ′2

𝑠

)} (
®𝝓, ®𝝓

)
, (S2.9)

with ®𝒓 ′1,2 being the ACT integration variables, proving Lemma 4.3.

S2.3 Derivation of Lemma 4.4
As previously mentioned, the anisotropic HG functions form a
complete functional basis, irregardless of the choice for 𝚯. Hence,
Lemma 4.3 gives rise to an underdetermined system: we are free to

select the shape matrix as we wish (as long as it remains positive-
definite), and Lemma 4.3 would still hold.
As with any underdetermined system, to solve the system and

make mathematical progress we need to add additional constraints
to the system. To that end, we now consider only the 0th-order HG
transverse mode (the mode that corresponds to Ψ𝚯

00). This is not
merely a simplification: Of the main purposes of the shape matrix is
to increase the expressiveness of the expansion when using a limited
number of modes (otherwise, it would not be needed). The more
HG modes we use, the less dependant is the expansion accuracy
on 𝚯. Therefore, we constrain the system to the most restrictive
setting—only the lowest-order mode—in order to derive a formula
for the shape matrix. Anyhow, the formulae remain mathematically
exact.

Under the setting discussed above Lemma 4.4 is derived: Denote
®𝒘 = 𝑘

𝑟
®𝝃 and, as before, 𝒻𝑛′𝑚′ ( ®𝒘) (Eq. (S2.7)) as the ACT that appears

in Eq. (S2.5). The 0th-order HG function is simply the Gaussian

Ψ𝚯

00 (®𝒓) ≡
1

π
3
4 |𝚯| 1

4
e−

1
2 ®𝒓
⊺
𝚯
−1®𝒓 . (S2.10)

Then, Eq. (S2.5) simplifies to

e−
1
2 ®𝒘⊺𝑸⊺𝚯−1𝑸 ®𝒘 =

(
π3 |𝚯|) 1/4

𝑠2𝜆2
𝑐 ′00
𝑐00

𝒻00 ( ®𝒘) . (S2.11)

As discussed in the paper, the even-ordered HG transverse modes
are real, therefore all the terms above are real. This also implies
that the shape matrix 𝚯 is real, as desired, as well as the function
𝒻00—which also follows from the fact that the transformed function
in Eq. (S2.7) is symmetric. Then, take the 2nd-order derivative with
respect to ®𝒘 (i.e., the Hessian) of the natural logarithm of both sides
above, yielding:

𝑸𝚯−1𝑸
⊺
= − 𝜕2

𝜕®𝒘2 ln
[ (
π3 |𝚯|) 1/4

𝑠2𝜆2
𝑐 ′00
𝑐00

𝒻00

]
. (S2.12)

Using the fact that ln(𝑥1𝑥2) = ln(𝑥1) + ln(𝑥2), those constant terms
above vanish under derivation, therefore Eq. (S2.12) reduces to the
interesting relation that constitutes Lemma 4.4, viz.

𝚯 = − 𝑸
⊺
[
𝜕2

𝜕®𝒘2 ln𝒻00 ( ®𝒘)
]−1

®𝒘=0
𝑸 , (S2.13)

with the 0th-th order scattering mode 𝒻00 as defined in Eq. (S2.7).
As an aside, observe that the evaluation at ®𝒘 = 0 above can also

be understood simply as the Fraunhofer region condition because
clearly lim𝑟→∞ ®𝒘 = 0.

S2.4 Computing the shape matrix
We briefly discuss how to compute the shape matrix via Theo-
rem 5.1.(ii) in the paper (i.e., Eq. (S2.13)).
The following few Lemmas may be of use to make analytic

progress towards a Shape matrix once an analytic expression for 𝜎
is known. The first one is derived using elementary means:
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Lemma S2.1. Given 𝑓 , a twice continuously differentiable function,

the following holds:

d2

d®𝒓2 ln 𝑓 =
1
𝑓

d2

d®𝒓2 𝑓 −
1
𝑓 2 ∇𝑓 ∇𝑓

⊺
,

where ∇𝑓 = d𝑓 /d®𝒓 is the gradient.

The next is a well-known result in linear algebra.

Lemma S2.2 (Recursive inverse of matrix sum). Let 𝑨 be a

non-singular 𝑑 ×𝑑 matrix and 𝑩 = 𝑩1 +𝑩2 + . . . +𝑩𝑝 a non-singular

matrix with each 𝑩 𝑗 being a rank-1 matrix. For each 1 ≤ 𝑗 ≤ 𝑝 ,

denote 𝑪 𝑗 ≜ 𝑨 + 𝑩1 + 𝑩2 + . . . + 𝑩 𝑗−1. If all 𝑪 𝑗 are invertible as well,

then,

𝑪−1
𝑞+1 = 𝑪−1

𝑞 − 𝑡𝑞𝑪
−1
𝑞 𝑩𝑞𝑪

−1
𝑞 ,

with 1 ≤ 𝑞 < 𝑝 and 𝑡𝑞 ≜
[
1 + tr

(
𝑪−1
𝑞 𝑩𝑞

)]−1
. Furthermore,

(𝑨 + 𝑩)−1 = 𝑪−1
𝑝 − 𝑡𝑝𝑪

−1
𝑝 𝑩𝑝𝑪

−1
𝑝 .

Proof. See Miller [1981]. □

Consider a twice continuously differentiable, but otherwise arbi-
trary, function 𝑓 . Denote

𝑨 ≜
1
𝑓

d2

d®𝒓2 𝑓 , (S2.14)

𝑩1 ≜ − 1
𝑓 2 ∇𝑓 ∇𝑓

⊺
, (S2.15)

with 𝑩1 clearly being a rank-1 matrix. Then, applying Lemma S2.1
and Lemma S2.2:[

𝜕2

𝜕®𝒓2 ln 𝑓

]−1
=(𝑨 + 𝑩1)−1 = 𝑨−1 − 𝑡1𝑨

−1𝑩1𝑨
−1 , (S2.16)

with

𝑡1 =

[
1 + tr

(
𝑨−1𝑩1

)]−1
=

[
1 − 1

𝑓
tr
(
∇𝑓 ∇𝑓 ⊺ d2

d®𝒓2 𝑓

)]−1
. (S2.17)

Eq. (S2.16) is a closed-form expression that may be useful in
computing the shape matrix. The remaining (potentially) involved
analytic step is only the computation of 𝑨−1, which amounts to the
inverse Hessian of angular coherence function.

S3 THE WIGNER-VILLE SPECTRUM IN
HERMITE-GAUSS SPACE

TheWigner-Ville Distribution (WVD) is a powerful bilinear repre-
sentation of a signal that commonly arise in optics and quantum
mechanics, useful for processing linear frequency-modulated sig-
nals. It is also commonly know as the wigner distribution function

and has seen some usage in computer graphics (see Section 2 in
the paper), chiefly as a form of a “generalized radiance” (introduced
by Walther [1968]), because it remains constant on far-field prop-
agation along a ray from the radiating source—like the classical
radiance. This is theoretically pleasant, but serves little practical
value because the same couple of problems that we set out to solve
in this paper afflict the WVD just as the CSD: it is still a (poten-
tially arbitrary) function, and representing it non-symbolically in
a renderer is not straightforward; and, formulation of light-matter

interaction remains equally difficult with the WVD, as the a similar
diffraction problem to Theorem 3.1 still needs to be solved. Addi-
tional shortcomings are noted by Steinberg and Yan [2021b]: it is a
less intuitive representation of the important characteristics of the
wave ensemble and admits less relevant literature.

In this section we formally show that, in HG space, the WVD and
the CSD are intrinsically related. Given a stochastic process with
its CSD C(®𝒓 ; ®𝝃 1, ®𝝃 2)—as in Eq. (10), with the dependence on the
angular frequency neglected—the WVD can be formally defined as
the directional power spectrum [Born and Wolf 1999]:

𝒲

(
®𝒓 ; ®𝜻

)
≜

∫
�̂�⊥

d2®𝝃 ⊥ C
(
®𝒓 ; 1

2
®𝝃 ⊥

,−1
2
®𝝃 ⊥

)
e−i®𝜻 ·®𝝃 ⊥

, (S3.1)

which is a Fourier transform of the CSD evaluated at a separation
of ®𝝃 ⊥ over the transverse plane 𝒓⊥. That transverse plane is centred
around the origin, such that 𝒓⊥ = {®𝝃 ⊥ : 𝒓 · ®𝝃 ⊥

= 0}. We reiterate
our definition of the far field CSD in Hermite-Gauss space (Defini-
tion 4.1), viz.

C
(
®𝒓 ; ®𝝃

)
≜

ei𝑘 �̂� ·®𝝃

𝑟2

∑︁
𝑛,𝑚

𝑐𝑛𝑚 Ψ𝚯

𝑛𝑚

(
𝑘
𝑟 𝑸

®𝝃
)
, (S3.2)

with some orthogonal 𝑸 and recall that ®𝝃 = ®𝝃 1 − ®𝝃 2, by definition.
Applying Eq. (S3.1) to the CSD in HG space above, noting that
𝒓 · ®𝝃 ⊥

= 0 and performing the variable change ®𝝃 ′′ = 𝑘
𝑟 𝑸

®𝝃 ⊥, with
the Jacobian being | 𝑟

𝑘
𝑸−1 | = ( 𝑟

𝑘
)2, yields

𝒲

(
®𝒓 ; ®𝜻

)
=

1
𝑟2

∑︁
𝑛,𝑚

𝑐𝑛𝑚ℱ

{
ei𝑘 �̂� ·®𝝃 ⊥

Ψ𝚯

𝑛𝑚

(
𝑘
𝑟 𝑸

®𝝃 ⊥
)} (

®𝜻
)

=
1
𝑘2

∑︁
𝑛,𝑚

𝑐𝑛𝑚ℱ

{
Ψ𝚯

𝑛𝑚

(
®𝝃 ′′

)} (
𝑟
𝑘
𝑸 ®𝜻

)
=

2π
𝑘2

∑︁
𝑛,𝑚

(−i)𝑛+𝑚𝑐𝑛𝑚 Ψ̃𝚯
−1

𝑛𝑚

(
𝑟
𝑘
𝑸 ®𝜻

)
, (S3.3)

where we applied the FT of the Hermite-Gauss function identity
(Eq. (S1.6)) at the last step.

Eq. (S3.3) demonstrates that the WVD of a wave ensemble, in
HG space, is similar to the representation of the CSD, up to the
duality of the HG functions and constants. The close relationship
between the CSD and WVD in Hermite-Gauss space suggests that
the decision of whether to use the CSD or WVD to quantify a wave
ensemble is a matter of preference, and our theory could easily be
adapted to a WVD-centric formulation.

Properties of the WVD.

(1) (Realness) In the paper, Section 4, we have shown that the
odd-ordered HG coefficients correspond to evanescent waves
that vanish in the far field. Therefore, 𝑛 +𝑚 is even and𝒲 is
real, as expected [Bastiaans 1986].

(2) (Spectral intensity) Applying the inverse Fourier trans-
form to the definition of theWVD, Eq. (S3.1), as well as Eq. (11)
yields

𝐼 (®𝒓) = C (®𝒓 ; 0) =
∫
�̂�⊥

d2®𝜻⊥
𝒲

(
𝒓 ; 𝑟 ®𝜻⊥

)
, (S3.4)
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which is the observed (positional) spectral intensity, as quan-
tified by the WVD. Recall that we omit the angular frequency
from the parameter lists, for brevity.

(3) (Perfectly-incoherent radiation) Hypothetical, perfectly-
incoherent radiation could be described via a CSD propor-
tional to a Dirac delta, viz. C ∝ 𝛿2 ( ®𝝃 ⊥). Then, the WVD takes
the form of a function that does not dependent on ®𝜻 .

(4) (Perfectly-coherent radiation) Conversely, radiation that
remains coherent throughout all space admits a CSD that is
constant in ®𝝃 ⊥, therefore the corresponding WVD takes the
form of a Dirac delta in ®𝜻 .

The first pair of properties above suggest that the quantity

𝒲

(
𝒓 ; 𝑘 ®𝜻

)
=

2π
𝑘2

∑︁
𝑛,𝑚

(−i)𝑛+𝑚𝑐𝑛𝑚 Ψ̃𝚯
−1

𝑛𝑚

(
𝑸 ®𝜻

)
(S3.5)

can be understood as a “generalized radiance”, that remains con-
stant on free-space propagation, admits some convenient analytic
properties and is very closely related to our far-field CSD.

S4 POLARIZATION - GENERALIZED STOKES
PARAMETERS

In this sectionwe briefly outline how to incorporate polarization into
our formalism, and by doing so show that our theory is consistent
with classical electromagnetism. We also introduce the useful gener-
alized Stoked parameters to the computer graphics community. This
section builds upon the cross-spectral density matrix (sometimes
known as the coherency matrix), which we will shortly introduce.
See the supplemental material of Steinberg and Yan [2021b] for iden-
tities relevant to general polarization matrices. Also see Goodman
[2015]; Wolf [2007] for additional information.
In the paper, in Subsection 3.2, we introduced a scalar-valued

stochastic process 𝑢 (®𝒓, 𝑡) that describes a wave ensemble, and de-
fined its (scalar) CSD C (Eq. (10)). Electromagnetic fields are vector
fields, and we now change the notation: Let ®𝑬 (®𝒓, 𝑡) be the stochas-
tic process that quantifies the radiation’s electric field distribution
throughout spacetime (the previous, scalar quantity 𝑢 can be un-
derstood as the magnitude of that field, viz. 𝑢 = | ®𝑬 | ). Let �̂� be the
direction of propagation at some point ®𝒓 , and denote an orthonormal

transverse basis as the set {�̂�1, �̂�2} of vectors that together with �̂�
form an orthonormal basis. ®𝑬 can now be decomposed into its trans-
verse oscillations 𝐸1,2 = �̂�1,2 · ®𝑬 . See Fig. 1. The cross-spectral density
matrix (CSDM) generalizes the CSD to vector fields: by considering
the cross-correlation between these transverse components, the
CSDM is defined as:
↔C
(
®𝒓 ; ®𝝃 1, ®𝝃 2 ; 𝜔

)
≜

[〈
𝐸1 (®𝒓1)𝐸★1 (®𝒓2)

〉
𝜔

〈
𝐸1 (®𝒓1)𝐸★2 (®𝒓2)

〉
𝜔〈

𝐸2 (®𝒓1)𝐸★1 (®𝒓2)
〉
𝜔

〈
𝐸2 (®𝒓1)𝐸★2 (®𝒓2)

〉
𝜔

]
(S4.1)

(up to an irrelevant normalization constant) with the shorthands
®𝒓1,2 = ®𝒓 + ®𝝃 1,2 and ⟨·⟩𝜔 being the same ensemble-averaging operator
that was defined in the paper (see Eq. (10)), i.e., the ensemble-average
over the statistical ensemble of same-frequency realizations of ®𝑬 .
The above matrix is also sometimes known, confusingly, as the
“coherence matrix”, but this term is also used for non-coherence-
aware polarization matrices and should be avoided.

�̂�1

�̂�2
�̂�

®𝑬

Fig. 1. An electric field ®𝑬 decomposed into its transverse components along
�̂�1 and �̂�2, that span the transverse plane, which is perpendicular to the
direction of propagation �̂� .

It is easy to see that when ®𝝃 1 = ®𝝃 2, this matrix must be Hermitian
(viz.

↔C†
=

↔C) and positive semi-definite. Additionally, we state
without proving that the observed spectral intensity of the radiation
is

𝐼 (®𝒓 ; 𝜔) ≜ tr
↔C (®𝒓 ; 0, 0 ; 𝜔) , (S4.2)

in stark similarity to the scalar case (Eq. (11) in the paper) and
where tr is the matrix trace operator. The complex spectral degree-
of-coherence is then

𝛾

(
®𝒓 ; ®𝝃 1, ®𝝃 2 ; 𝜔

)
≜

tr
↔C
(
®𝒓 ; ®𝝃 1, ®𝝃 2 ; 𝜔

)
√︂
𝐼

(
®𝒓 + ®𝝃 1 ; 𝜔

)√︂
𝐼

(
®𝒓 + ®𝝃 2 ; 𝜔

) . (S4.3)

The complex degree-of-coherence quantifies how coherent the radi-
ation is, with 0 ≤ |𝛾 | ≤ 1 (strictly speaking, |𝛾 | = 0 is aphysical).
Finally, the spectral degree-of-polarization quantifies how polarized
the radiation is (but does not immediately describe which type of
polarization arises):

𝓅(®𝒓 ; 𝜔) ≜
√︂

1 − 4
���↔C���(tr ↔C

)−2
, (S4.4)

where |↔C| denotes the determinant and it is implied that ®𝝃 1,2 = 0.
For proofs see Steinberg and Yan [2021b, supplemental].
The formulation briefly outlined above describes a unified for-

malism of coherence and polarization. It is well-known that these
concepts are intrinsically related, e.g., the coherence properties of a
beam may induce polarization changes on free-space propagation.
Moreover, both polarization and coherence affect (and, in-turn, are
affected by) the physical process of light-matter interaction. This
formalism remains physically accurate as long as the spectral inten-
sity can be recovered from the CSDM via Eq. (S4.2), which is the
exact same validity domain that was discussed in the paper (Subsec-
tion 3.2) for the scalar case: ergodicity or sufficiently polychromatic
radiation. We will now discuss how our theory light-matter interac-
tion works with the CSDM.
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S4.1 The Generalized Stokes Parameters
Let the (normalized) Pauli spin matrices be defined as (usually these
are denoted as 𝝈 𝑗 , however that notation would clash with the
scattering amplitude function)

𝝉0 =
1
2

[
1 0
0 1

]
, 𝝉1 =

1
2

[
1 0
0 −1

]
,

𝝉2 =
1
2

[
0 1
1 0

]
, 𝝉3 =

1
2

[
0 −i
i 0

]
. (S4.5)

The CSDM is Hermitian when evaluated at ®𝝃 1 = ®𝝃 2, therefore we
will use these Pauli matrices, which clearly form a basis of the real
vector space over 2×2 Hermitian matrices, to decompose the CSDM
as follows:

↔C = C0 𝝉0 + C1 𝝉1 + C2 𝝉2 + C3 𝝉3 , (S4.6)

where C𝑗 is the coefficient of the 𝑗-th matrix in Eq. (S4.5). Each such
C𝑗 is a scalar function of ®𝒓 , ®𝝃 1, ®𝝃 2, 𝜔 , and together these coefficients
form the generalized Stokes parameters, introduced by Korotkova and
Wolf [2005] (note wrong sign in their Eq. 10c). To ensure Hermiticity,
C𝑗 must be real when ®𝝃 1 = ®𝝃 2, otherwise they can take complex
values. The coefficientsmust also fulfil the Poincaré sphere condition√︃
|C1 | 2 + |C2 | 2 + |C3 | 2 ≤ |C0 | .
Using Eq. (S4.6) we can immediately rewrite the quantities that

characterize the coherence properties of the wave ensemble using
the generalized Stokes parameters:

𝐼 (®𝒓 ; 𝜔) ≜ C0 (®𝒓 ; 0, 0 ; 𝜔) , (S4.7)

𝛾

(
®𝒓 ; ®𝝃 1, ®𝝃 2 ; 𝜔

)
≜

C0
(
®𝒓 ; ®𝝃 1, ®𝝃 2 ; 𝜔

)
√︂
𝐼

(
®𝒓 + ®𝝃 1 ; 𝜔

)√︂
𝐼

(
®𝒓 + ®𝝃 2 ; 𝜔

) . (S4.8)

The immediate conclusion is that the 0th generalized Stokes param-
eter, C0, fully describes the spectral intensity carried by the wave
ensemble, as well as its coherence properties. The other coefficients
describe the polarization properties. The degree of cross-polarization
takes the convenient form:

𝒫

(
®𝒓 ; ®𝝃 1, ®𝝃 2 ; 𝜔

)
≜

1
C2

0

√︃
C2

1 + C2
2 + C2

3 , (S4.9)

which reduces to the degree-of-polarization 𝓅 (Eq. (S4.4)) when
®𝝃 1,2 = 0. Additional parameters quantify the beam’s polarization
ellipse. The semi-axis magnitudes of the polarization ellipse are
[Korotkova 2017]

𝜍1,2 (®𝒓 ; 𝜔) ≜ C− 1
2

3

[
C0 ±

√︃
C2

1 + C2
2

] 1
2

(S4.10)

and its spectral orientation angle is [Korotkova 2017]

𝜓 (®𝒓 ; 𝜔) ≜ 1
2 arctan

(C2
C1

)
. (S4.11)

The spectral orientation angle defines the angle between the first
transverse direction �̂�1 and the major semi-axis of the polarization
ellipse.

It should be remembered that, just as with the coherence matrix↔C, the generalized Stokes parameters are defined with respect to

the choice of the transverse basis �̂�1,2. This dependence is implicit
and is omitted from the notation.
The reader might note the profound similarities between the

discussion above and the classical Stokes parameters, which have
been used for polarization-aware radiometric renderers (e.g., [Jarabo
and Arellano 2017]). Indeed, the generalized Stokes parameters are
to the classical Stokes parameters the same as the CSD is to the
classical radiance: we imbue the radiometric radiance with a two-
point formalism that allows quantifying the correlation between
the waveforms that constitute the statistical ensemble of waves.
Therefore, the coefficients of the generalized Stokes parameters
describe the polarization state of the radiation in an identical manner
to the classical Stokes parameters. Furthermore, when ®𝝃 1 = ®𝝃 2, as
discussed the C𝑗 must be real, and indeed they simply reduce to the
classical, single-point radiometric Stokes parameters.

S4.2 Light-matter interaction
To apply our theory to the vectorized formalism of polarization
and coherence, we use the generalized Stokes parameters C𝑗 , ex-
panded in HG space, in place of the CSD C. The generalized Stokes
parameter in HG space takes an identical form to Definition 4.1.
Therefore, a wave ensemble is now parametrized by four (instead
of one) series of HG coefficients, 𝑐 ( 𝑗)𝑛𝑚 , expanding the generalized
Stokes parameters C𝑗 in HG space, as well as the shape matrix 𝚯 as
before. Note that a single shape matrix is sufficient: C0 quantifies
the coherence properties of the radiation.

The scattering properties of locally-stationarymatter need now to
be specified via 16 scattering amplitude functions 𝜎 ( 𝑗→𝑙) (𝒔 ′, 𝒓 ′ ; ®𝒓 ′),
which quantifies the matter response in terms of the scattered 𝑙-th
generalized Stokes parameter, with respect to incident 𝑗-th gener-
alized Stokes parameter. The scattering angular coherence ˜𝑓𝜎( 𝑗→𝑙)

and stationary autocorrelation 𝑅 ( 𝑗→𝑙)
𝜎𝜎 for each scattering amplitude

are defined in an identical manner to before, see Eqs. (12) and (13).
In this case, Theorem 5.1 in the paper can be rewritten as

Theorem S4.1. (Polarization-aware interaction of light with

locally-stationary matter in HG space). Let 𝑐
′( 𝑗)
𝑛′𝑚′ and 𝚯

′
be the

incident radiation’s HG transverse modes for each generalized Stoke

parameter and the shape matrix, respectively. Then,

(i) the scattered HG transverse modes of each generalized Stoke

parameter are:

𝑐
(𝑙)
𝑛𝑚 =

3∑︁
𝑗=0

〈
˜𝑓𝜎
( 𝑗→𝑙) ��� Ψ̃𝚯

𝑛𝑚

(
𝑸®𝒓 ′)〉

×
∑︁
𝑛′,𝑚′

1
𝑠2𝜆2 𝑐

′( 𝑗)
𝑛′𝑚′ℱ

{
𝑅
( 𝑗→𝑙)
𝜎𝜎 Ψ𝚯

′
𝑛′𝑚′

(
𝑘𝑸′®𝒓 ′

𝑠

)} (
®𝝓
)
,

(ii) and, the shape matrix is:

𝚯 = 𝑸
⊺ ·

[
𝜕2

𝜕®𝜻 2 ln
��� ˜𝑓𝜎

(0→0) ���]−1

®𝜻=0
· 𝑸 ,

where
˜𝑓𝜎( 𝑗→𝑙)

and 𝑅
( 𝑗→𝑙)
𝜎𝜎 are the matter’s scattering angular coher-

ence and stationary autocorrelation functions, respectively.
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Note that the formula for the shape matrix only makes use of the
0 → 0 scattering mode, as discussed. The equations above retain
the same form as in the case of the scalar CSD (Theorem 5.1 in the
paper), and all of the results and examples we explored in the paper
(in Subsection 5.1) apply to Theorem S4.1 as well. Therefore, the
theory is virtually unchanged while the computational requirements
are increased up to 16-fold (just as with introducing the Stokes
parameters to a radiometric renderer). Though, in practice, usually
much of the cross-component scattering (i.e. the 𝜎 ( 𝑗→𝑙) with 𝑗 ≠ 𝑙 )
vanishes.

S4.3 ABCD Optical Systems
A large body of optical work has discussed quantifying the effects
of an optical element on radiation via a matrix that acts upon the
CSDM (which, in the past, was often termed the “coherence matrix”
in that literature). This gives rise to a linear formalism, and optical
elements that are described using this formulation are sometimes
known as “ABCD optical systems”. This subsection serves as a very
brief overview.

Formally, given some optical element, let 𝑻 (®𝒓 ; 𝜔) be a complex-
valued, 2×2 matrix, which should be understood as the Jones matrix

that describes the behaviour of the optical element upon a single

realization of wave ensemble, of angular frequency 𝜔 , that interacts
with the optical element at position ®𝒓 . Then, the CSDM of the entire
ensemble after interactions is given by:

↔C
(
®𝒓 ; ®𝝃 1, ®𝝃 2

)
=

〈
𝑻
(
®𝒓 + ®𝝃 1

) ↔C′ (®𝒓 ; ®𝝃 1, ®𝝃 2
)
𝑻†

(
®𝒓 + ®𝝃 2

)〉
, (S4.12)

where
↔C′ is the CSDM of the incident radiation. We drop the𝜔 from

the arguments for brevity. Clearly, when ®𝝃 1 = ®𝝃 2, Hermiticity and
positive semi-definiteness are preserved. This formulation is similar
to the Jones calculus discussed by Steinberg and Yan [2021b].

Note that due to the ensemble-average that appears in Eq. (S4.12),
the calculus briefly outlined in this subsection is able to describe
optical elements that mutate both the coherence and the polariza-
tion properties of an incident light beam. This is in contrast to the
standard Jones calculus that is capable of neither, and works with
fully-coherent, full-polarized beams. It is then easy to show that this
calculus is theoretically able to describe arbitrary optical elements.
Given fixed ®𝒓 , ®𝝃 1,2 and 𝜔 , 16 real values fully quantify the relation
between

↔C′ and
↔C in Eq. (S4.12): 4 complex values for 𝑻 evaluated

at each point. Similarly, 16 real values are required to quantify the
cross-scattering between a pair of generalized Stokes parameters
vectors, and both formalisms are equally powerful. The conceptual
difference between the two can be understood as: The values that
relate the generalized Stokes parameters to each other quantify the
change in statistics that the entire ensemble undergoes, while the
Jones matrix quantifies the action upon a single realization in the
ensemble. Using Eq. (S4.6), an analytic relation between these sets
of values is easy to establish.

Our preference to formulate our polarization-aware light-matter
interaction theory (Theorem S4.1) using the generalized Stokes
parameters stems from the very same fact that we have stressed
in the paper: it is the statistical properties of the wave ensemble
that dictate its observable properties. This makes the generalized
Stokes parameters more appealing. Anyhow, the manner in which

we arrange these 16 quantities is of little consequence, it is computing

these 16 quantities that is the difficult endevour. In general, computing
one of these values requires solving a scalar diffraction problem (viz.
Theorem 3.1), which is the problem we tackle in the paper.

Related work. We briefly discuss a few work that consider such
ABCD systems, with an emphasis on work that focus on the effects
on the coherence of light. These work deal with simple optical
elements, where the Jones matrix can be formulated with relative
ease, and none discuss the more general problem of diffraction
with more complicated scatters. Therefore, these work are at most
tangentially related and we cite a select few.

Shirai and Wolf [2004] as well as follow-up work by Hanson et al.
[2008] consider ABCD systems that are composed of a free-space
propagator, random phase screens and apertures with Gaussian-
shaped transmission. A general discussion on liquid-crystal spatial
light modulators to control coherence and polarization is given
by Ostrovsky et al. [2011], and Ma et al. [2015] study the changes
on the degree-of-coherence and degree-of-polarization induced on
refraction through a rough-surfaced depolarizer.
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