
Physical Light-Matter Interaction in Hermite-Gauss Space

SHLOMI STEINBERG and LING-QI YAN, University of California, Santa Barbara, United States

(a)(b) (f)

(c) (d)

(e)

Fig. 1. Partially-coherent light transport in a scene with diffractive materials. The insets visualise the shape of the coherence area (on the plane transverse to
propagation direction, see Fig. 5) of light that is sourced from a light source or scattered by matter. A spherical source gives rise to light with (a) highly isotropic
spatial coherence, while a cylindrical source produces light that is (b) significantly more coherent in one transverse direction than in the other (a phenomenon
we term coherence anisotropy). Light then propagates away from the source and interacts with matter. These physical processes—the coherence of light and
light-matter interaction—are mutually-dependant processes: Coherence drives the optical response of the interaction of light with matter, and, conversely, the
properties of matter alter the coherence properties of the scattered radiation. (c) Thin coating over the wings of a silver scarab induces interference. The distinct
colours on the left and right wings arise solely due to the difference in the spectral composition and coherence of the incident light. The surface is smooth and
the scattered light retains the coherence shape of the incident light. (d,e) On the other hand, scatter by rough surfaces induces coherence properties and
anisotropies that are dictated by the surface parameters. (f) Diffraction grating by (unrecorded) DVD disks. Note that the secondary diffraction lobes diminish
due to the limited spatial coherence of light. One of the primary theoretical conclusions of this paper is that it is the ensemble-averaged reflectivity of the
matter that drives the coherence shape of the scattered light. This can be seen in (c) and (f), where the induced interference does not influence the scattered
radiation’s coherence properties.

Our purpose in this paper is two-fold: introduce a computationally-tractable
decomposition of the coherence properties of light; and, present a general-
purpose light-matter interaction framework for partially-coherent light. In
a recent publication, Steinberg and Yan [2021] introduced a framework that
generalises the classical radiometry-based light transport to physical optics.
This facilitates a qualitative increase in the scope of optical phenomena that
can be rendered, however with the additional expressibility comes greater
analytic difficulty: This coherence of light, which is the core quantity of
physical light transport, depends initially on the characteristics of the light
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source, and mutates on interaction with matter and propagation. Further-
more, current tools that aim to quantify the interaction of partially-coherent
light with matter remain limited to specific materials and are computation-
ally intensive. To practically represent a wide class of coherence functions,
we decompose their modal content in Hermite-Gauss space and derive a
set of light-matter interaction formulae, which quantify how matter scat-
ters light and affects its coherence properties. Then, we model matter as a
locally-stationary random process, generalizing the prevalent deterministic
and stationary stochastic descriptions. This gives rise to a framework that is
able to formulate the interaction of arbitrary partially-coherent light with
a wide class of matter. Indeed, we will show that our presented formalism
unifies a few of the state-of-the-art scatter and diffraction formulae into one
cohesive theory. This formulae include the sourcing of partially-coherent
light, scatter by rough surfaces and microgeometry, diffraction grating and
interference by a layered structure.

CCS Concepts: • Computing methodologies→ Rendering; Computer
graphics; • Applied computing → Physics.
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1 INTRODUCTION
The light that we observe daily consists of very many individual
constituents—each an electromagnetic wave. The laws that govern
the propagation of each such wave are well understood, however it
is the orchestrated behaviour of an ensemble of all these waves that
gives rise to observable visual phenomena that cannot be adequately
explained classically (i.e., radiometrically) nor via a deterministic
electromagnetic treatment. The statistical correlation between these
constituents over time and space is known as the optical coherence
of light, and is the primary quantity of interest in the study of the
observable properties of light (see Fig. 1). Essentially all the light
we employ and observe daily is composed of highly disorganised
such constituents, due to the random, spontaneous emission nature
of (non-lasing) light sources. Such light is termed partially-coherent
light.

The limited spatial coherence of light is fundamental to the man-
ner in which surface microgeometry reflects light, the appearance
of coated materials and the metallic flakes embedded in some paints.
See Fig. 2 for examples of how optical coherence affects material
appearance. The importance of optical coherence goes beyond the
reproduction of material appearance: radiation with limited coher-
ence is used for optical coherence tomography, and these principles
are applied for the decomposition of the light transport in a scene
[Gkioulekas et al. 2015; Kotwal et al. 2020]. Partially-coherent op-
tical speckle plays a role in a large variety of applications, e.g.,
non-line-of-sight imaging with weakly-coherent light [Katz et al.
2014] and diffraction-limited imaging. These applications go beyond
optical frequencies: for example, the study of the propagation of
radar in complex environment is a problem that can be formulated as
rendering with partially-coherent light of non-optical frequencies.
In a recent work, Steinberg and Yan [2021] build upon estab-

lished foundations in optical coherence theory to introduce a general
light transport framework for partially-coherent light. The central
quantity is a form of a cross-spectral density (CSD) function (to be
introduced in Subsection 3.2), which quantifies the statistical simi-
larity between spectral constituents of the wave ensemble at a pair
of space points. This two-point information is necessary to tran-
scend the limitation of classical radiometry and geometric optics,
and establish a formalism that is consistent with electromagnetism
[Wolf 2007]. Unlike traditional radiometry-based light transport,
that framework provides the means and formulae needed to describe
the global interaction of partially-coherent light throughout a scene,
and render wave-optics phenomena hitherto not possible. However,
as this two-point information is quantified by functions, propaga-
tion of light as well as light-matter interaction are formulated in
terms of operators acting upon these functions. This requires imple-
mentations to either adopt a symbolic treatment or restrict the CSD

to analytic expressions chosen a-priori. But the coherence of light
can take a wide variety of shapes (see Fig. 1): The characteristics
of both the source and matter affect the coherence properties of
light. Indeed, the coherence of light and the scattering of that light
by matter are closely-related physical processes. Quantifying the
coherence properties of a scattered beam with reasonable accuracy
is important, as these properties affect subsequent interactions with
matter and the observable properties of light.

Light transport in Hermite-Gauss space. A self-evident approach to
represent a large family of functions, while avoiding an impractical
symbolic treatment, is to work under a functional basis. The choice
of basis is crucial for success.We elect to use a class ofHermite-Gauss
(HG) functions, known as the anisotropic HG functions (formally
introduced in Section 3), which endow the univariate HG functions
with a linear operator. We term that operator the shape matrix,
and we will show that this matrix has clear physical meaning: the
coherence shape of light. Furthermore, of practical relevance is the
fact that this shape matrix greatly expands the family of functions
that we can represent with a limited number of basis functions.
The HG functions admit highly attractive analytic properties, and
in Section 4 we further discuss what makes them such a strong
candidate for our functional basis.

Locally-stationary matter. When working with optical frequen-
cies, a purely deterministic description of matter needs to be at a
sub-micrometre resolution in order to quantify diffractive features.
Often, such a detailed description of matter is infeasible. Instead, it
is common to describe matter statistically. Surfaces are described
via the spatial frequencies that arise, or a facet distribution, and the
interaction of light with participating media may be parametrised
by the random spatial distribution of some known types of particles.
Such descriptions are convenient, however, a material conclusion
emanates from the theory we develop: Matter features that disap-
pear on ensemble-averaging do not affect the coherence of the scattered
beam. But the ensemble-average of a stationary, at least in the wide-
sense, stochastic process is constant by definition! Truly, it is the
irregularities and imperfections—such as scratches and flakes—in
the matter that produce interesting diffractions.
With that in mind, we present a novel model to describe mat-

ter and its interaction with light in a hybrid fashion: as a locally-
stationary stochastic process. As will be shown, such a description
facilitates the capacity to represent both the micro-scale statistics
as well as larger, explicitly-defined features.

A theory of light-matter interaction. This pair of contributions,
light transport in Hermite-Gauss space and a locally-stationary
model of matter, go hand in hand: As mentioned, the scattering of
light by matter and the evolution of a beam’s coherence character-
istics are intrinsically connected processes. Therefore, the analytic
means we use to model these processes influence both the precision
of the optics we may reincarnate and the ease of the analysis.

Our models of choice complement each other well. The primary
theoretical contribution (Theorem 5.1) of this paper states that one
facet of the matter description—its ensemble-averaged behaviour—
fully drives the diffraction process (and thus the coherence prop-
erties that emerge in the scattered beam), while another facet—the
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Partially-coherent Weakly-coherent

Fig. 2. Photographs of (top) a compact disk and (bottom) soap bubbles,
illuminated by (left) a very small white LED source that admits a moderate
degree of spatial coherence and (right) a larger array of lower intensity
LEDs, which, together, produce weakly-coherent radiation. Both sources
have similar spectrum. The diffraction grating on the compact disk gives
rise to primary diffraction lobes (outlined in orange). In addition, secondary
diffraction lobes (outlined in cyan) appear as well under illumination by a
more coherent source. The soap bubbles aremade of an identical mixture and
are akin in chemical composition. Nevertheless, the thin-film interference
effects are clearly visible on the left and virtually not at all on the right,
indicating the important role optical coherence plays. See our supplemental
material where we include videos of these soap bubbles.

spatial correlation—dictates the interference process. This makes
sense: an ensemble-average of scatter behaviour over small spatial
regions (greater than wavelength) amounts to averaging the induced
phase-shifts of the scattered radiation. Thus, as mentioned, if the
former is constant, then the latter must annihilate. Consequently,
it is the correlation of spatial features that gives rise to interference.
This has strong practical consequences which we will discuss as we
conclude, in Section 6. It will also be shown that our theory uni-
fies some of the contemporary wave optics formulations of scatter
into one (see Subsection 5.1), and has comparable computational
complexity despite producing richer information: the coherence
properties of the scattered light, and not just its intensity.

We start with a short overview of mathematical and optical back-
ground in Section 3. We then formulate light transport in Hermite-
Gauss space and the theoretical underpinnings of our framework
in Section 4. Then, we present our primary contributions in Sec-
tion 5. Please also see our supplemental material, where we provide
complete derivations of some of our theoretical proofs and discuss
additional related topics.

2 RELATED WORK
Optical coherence in computer graphics. Steinberg and Yan [2021]

have introduced a physical light transport framework that gen-
eralises classical light transport using a formalism that is able to
account for the wave nature of light. Under that framework, the ren-
dering equation is replaced with the spectral-density transport equa-
tion that formalises the transport of cross-spectral density (CSD)
functions through the scene. We build upon these foundations to
present a theory that is able to practically express a large variety
of CSD functions, as well as the interaction of light (quantified by
these CSD functions) with matter.

Cuypers et al. [2012]; Oh et al. [2010] have introduced theWigner-
Ville Spectrum to computer graphics in a bid to replace the classical
radiance with a more physical variant. The Wigner-Ville Spectrum—
also known as the Wigner Distribution Function (WDF)—is a power-
ful bilinear space-(spatial) frequency representation of a signal, and
is closely related to the CSD as its Fourier transform with respect
to spatial separation. Using the fact that the CSD and the WDF are
Fourier transform-pairs, it is easy to show that in Hermite-Gauss
space the representation of the WDF is (up to the duality of the HG
functions) the same as the representation of the CSD. We formally
show so in Section S3 in our supplemental material. Noteworthy,
this pleasant symmetry between the WDF and CSD in HG space
highlights the analytic amenability of the HG representation under
spectral decomposition (discussed in Section 4).
Other relevant work consider the optical coherence of light to

reproduce a particular wave-optics effect. Different approaches are
taken to roughly approximate the spatial area over which radiation
remains coherent (the coherence area of light): A Gaussian kernel
is used in order to render diffractive scattering of light by explicitly-
defined surface microgeometry [Falster et al. 2020; Yan et al. 2018];
render diffractive scratches [Werner et al. 2017]; render biological
diffraction grating surfaces [Dhillon et al. 2014]; andmeasure diffrac-
tion patterns of holographic surfaces using Jones calculus [Toisoul
et al. 2018]. Alternatively, Levin et al. [2013] use simple square-
pulse (box function) kernels for the synthesis of high-resolution,
spatially-varying BRDFs.

Coherence modulation. Over the years, a substantial amount of
optical work has studies the influence of different optical elements,
surfaces and scattering media on the coherence properties of the
scattered light. The following list is far from exhaustive.

The important work by Wolf et al. [1989] outlines the theory for
scattering from random media within the accuracy of the first-order
Born approximation, with closed-form expressions for the spectral
density on scatter from a perfectly homogenous, stationary medium
provided. A large body of follow-up work continue the study in
different directions: e.g., predictable manipulation of coherence via
scattering by specifically-designed statistical media [Pan et al. 2020],
conditions on beam retention [Lahiri and Wolf 2009], and coherence
changes of structured beams when scattered by deterministic media
[Wang et al. 2016]. Korotkova and Yao [2020] explore the propa-
gation of partially-coherent radiation through oceanic turbulence.
Their approach quantifies the linear turbulent medium in terms of
its power spectra and considers how these statistics affect the CSD.
Gbur [2014] provide a review on the similar problem of studying
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the effects of atmospheric turbulence on the statistics of propagat-
ing light. By rewriting the propagation integral through an ABCD
optical system as a convolution, Ma et al. [2019] discuss a simple
method for efficient numeric simulations of the CSD through that
system. The influence of a rough surface spatial light modulator,
which induces random phase modulations, on the coherence and po-
larization properties of light is investigated byMa et al. [2015]. Their
formalism employs the cross-spectral density matrix and ABCD op-
tical elements, which we cover in our supplemental material. The
effects of scattering by fluids with Brownian motion particles is
explored [Popov and Vitkin 2016] by also employing the ABCD
formalism. Betancur and Castañeda [2008] present a method for
designing spatial modulator for preprescribed power distributions.
All these works rely on the Huygens-Fresnel integral for free-space
propagation, and (explicitly or implicitly) on the first-order Born
approximation.
The work cited above shares some of the motivational basis for

this paper in analysing the coherence of the scattered radiation.
However, all these work consider specific types of matter, which ei-
ther can be represented as simple ABCD systems or are constrained
to purely statistical matter models. Furthermore, they are often re-
stricted to Gaussian Schell-model sources or the methods rely on
numeric integration of computationally non-trivial integrals. Our
work focuses on computability and presents an expressive, novel
locally-stationary matter model, that can describe both statistical
and deterministic scattering features.

Appearance reproduction with wave optics. Rendering different
diffraction phenomena has been a very active area of research in
computer graphics. Somework aims to solve the full electromagnetic
problem with coherent fields. The finite-difference time-domain
(FDTD) method is used to formulate a solution to Maxwell’s equa-
tions for the nanofabrication of materials with pigment-free struc-
tural colours [Auzinger et al. 2018], and numerically solving a light
propagation problem in a simple scene [Musbach et al. 2013]. An
approximate analytic solution to a scattering differential system is
used to render liquid-crystal micrographs [Steinberg 2020].
Frequently, in addition to ignoring optical coherence, a simpli-

fied optical formalism (“wave optics”) is employed in-place of full
electromagnetism. Stam [1999] is of the first to present practical
work that considers the wave nature of light. The large body of
work that followed includes rendering thin-film interference [Bel-
cour and Barla 2017; Kneiphof et al. 2019]; rendering soap bubbles
[Huang et al. 2020]; rendering iridescent, pearlescentmaterials [Guil-
lén et al. 2020]; formulating diffraction-aware BSDFs [Toisoul and
Ghosh 2017; Velinov et al. 2018]; rendering of birefringent dielectrics
[Steinberg 2019]; rendering effects that arise due to scattering by
non-spherical particles, like rainbows [Sadeghi et al. 2012]; and,
rendering optical speckle fields that arise on scattering of coherent
illumination by random media [Bar et al. 2020]. Also of relevance
is work that employs surface scatter theories in computer graphics
[Holzschuch and Pacanowski 2017; Steinberg and Yan 2021a; Yan
et al. 2018].
While ignoring optical coherence holds merit in many cases

where the diffractive matter features are tiny, as we will show in

Section 6 caveats should be applied and coherence may play a role
in virtually any diffraction effect.

Applications of the Hermite-Gauss functions. Takemura and Takeuchi
[1988]; Ismail and Simeonov [2020] have studied some of the prop-
erties of the anisotropic Hermite-Gauss (Eq. (5)) functions, but oth-
erwise these functions have seen virtually no application and been
almost entirely ignored. The standard HG functions, on the other
hand, have been employed by a great body of work, too numerous to
exhaustively list here, for a variety of applications. The fact that the
HG functions are the eigenfunctions of the fractional and standard
Fourier transform has been used for image filtering, compression
and encryption [Kang et al. 2015; Papari et al. 2012; van Dijk and
Martens 1997].
It should be noted that the formalism that is presented in this

paper bears no relation to these Hermite-Gauss beams that are
common in optics: it is the modal content of the CSD (and not the
beam!) that interests us.

3 THEORETICAL FOUNDATIONS

3.1 Preliminaries
The purpose of this subsection is to briefly introduce the reader to
our notation and the mathematical tools central to this paper.

We denote the field of real numbers asR, the complex plane asC
and the set of natural (non-negative) integers asN. The Cartesian
three-dimensional vector space then becomesR3, and, similarly, the
set of 𝑛 ×𝑚 real matrices isR𝑛×𝑚 . Our vector notation convention
throughout the paper is as follows: Arbitrary spatial vectors are
written with an arrow accent, ®𝒓 ∈ R3. Vectors with a circumflex 𝒓
denote the unit vector in the direction of ®𝒓 , while the magnitude of
®𝒓 is denoted via the scalar sharing the same letter, viz. 𝑟 = |®𝒓 | . The
unit vectors that span the standard Cartesian basis ofR3 are �̂�, �̂�, �̂�,
and the Cartesian components of a vector ®𝒓 are denoted as 𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 .
A real, square matrix 𝑨 ∈ R𝑛×𝑛 is said to be positive-definite if

®𝒓⊺𝑨®𝒓 > 0 for non-zero ®𝒓 ∈ R𝑛 . Given a positive-definite matrix
𝑨 ∈ R𝑛×𝑛 , we denote a matrix square root of 𝑨 as a matrix 𝑨

1/2

that satisfies 𝑨 = 𝑨
1/2 (𝑨1/2)⊺ . Note that, as 𝑨 ≻ 0, such a square

root always exists (but, in general, is not unique), and can be found
via, e.g., the Cholesky factorization. In addition, our convention
is that 𝑨−1/2 = (𝑨1/2)−1, i.e. the inverse of the square root. Given
𝑨 ≻ 0, a simple factorization argument can be used to show that
(𝑨1/2)−⊺ = (𝑨−1)1/2.
Given a pair of 𝐿2 functions, 𝑓 , 𝑔 : R3 → C, we write their inner

product as

⟨𝑓 | 𝑔⟩ ≜
∫
R3

d3®𝒓 ′ 𝑓 (®𝒓 ′)𝑔★ (®𝒓 ′) , (1)

where the operator★denotes complex conjugation and note that our
notation reserves primed variables for local or integration variables.

Fourier analysis. We denote the spatial Fourier transform (FT)
operator, with non-unitary angular-frequency kernels, asℱ and its
inverse asℱ−1. Let 𝑓 : R3 → C be an 𝐿2 function, then the FT of
𝑓 is

ℱ
{
𝑓
} (®𝜻 ) ≜ ∫

R3
d3®𝒓 ′ 𝑓 (®𝒓 ′)e−i®𝒓 ′ ·®𝜻 . (2)
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As a special case we define the angular correlation transform (ACT)
operator, denoted 𝒜 , to be the Fourier transform of a function of
two spatial variables, 𝐹 : R3 ×R3 → C, with the second Fourier
kernel conjugated, viz.

𝒜

{
𝐹
} (
®𝜻 1, ®𝜻 2

)
≜

∫
R3

d3®𝒓 ′1
∫
R3

d3®𝒓 ′2 𝐹
(®𝒓 ′1, ®𝒓 ′2)e−i®𝒓 ′1 ·®𝜻 1 ei®𝒓 ′2 ·®𝜻 2 . (3)

The definition of the ACT operator is motivated by the definition of
the cross-spectral density function (see Eq. (10)).

The convolution operator arises from the FT via the well-known
convolution theorem:

𝑓 ∗ 𝑔 ≜ℱ−1{
ℱ

{
𝑓
}
ℱ

{
𝑔
}}

. (4)

Anisotropic Hermite-Gauss functions. We denote the 𝑛-th degree
(univariate) Hermite-Gauss (HG) function as Ψ𝑛 (𝑥), for a natural
integer 𝑛 ∈ N. See Section S1 in our supplemental material for
explicit formulae for the Ψ𝑛 and a few of their relevant properties
(further, see Szegö [1939] for a more comprehensive discussion). We
would like to extend the nice properties admitted by the univariate
HG functions to the three-dimensional space. To that end, we use a

Table 1. List of symbols and notation (location of definition on the right)

NOTATION AND SYMBOLS
Notation
®𝒓 Vectors: arrow accented boldface, lower-case letters
𝑟 = |®𝒓 | Vector’s magnitude: scalars sharing the same letter as the vector
𝒓 = ®𝒓/𝑟 Unit vector: hat accented boldface, also sharing letter with a vector
𝑨 Matrices: boldface, capital letters
ℒ Operators: typically capital latin letters in script typeface

Symbols
𝑐 The speed of light
𝜆 Wavelength (Page 6)
𝑘 = 2𝜋

𝜆 Wavenumber (Page 6)
𝜔 = 𝑐𝑘 Wave’s angular frequency (Page 6)
C Cross-spectral density (CSD) function of a wave ensemble (Eq. (10))
Ψ𝚯

𝑛𝑚𝑙
Anisotropic Hermite-Gauss function, of degree (𝑛,𝑚, 𝑙) and order
𝜇 = 𝑛 +𝑚 + 𝑙 (Eq. (5))

𝜎 Scattering amplitude function (Page 2)
𝛴 Scattering mutual intensity function (Theorem 3.1)
𝑅𝜎𝜎 Scattering stationary autocorrelation function (Eq. (12))
˜𝑓𝜎 Scattering angular coherence function (Eq. (13))

Operators
𝛿 (𝑥) Dirac delta
𝛿𝑛𝑚 Kronecker delta
⟨· | ·⟩ Inner product over 𝐿2-functions space (Eq. (1))
ℱ

{·} Fourier transform (FT) operator (Eq. (2))
𝒜

{·} Angular correlation transform (ACT) operator (Eq. (3))
∗ Convolution operator (Eq. (4))
Re, Im Real and imaginary value operators
𝑧★ Complex conjugate of 𝑧 ∈ C
𝑨
⊺ , 𝑨† Transpose and conjugate transpose of 𝑨

⟨·⟩ Ensemble-averaging operator (Page 10)
⟨·⟩𝜔 Ensemble-average over same-frequency constituents (Page 6)

form of anisotropic HG functions, similar to the functions introduced
by Takemura and Takeuchi [1988], which are defined with respect to
some real positive-definite matrix 𝚯—the shape matrix—as follows:

Ψ𝚯

𝑛𝑚𝑙 (®𝒓) ≜
(−1)𝜇

π
3
4 2

𝜇

2
√
𝑚! 𝑛! 𝑙 !

e
1
2 ®𝒓
⊺
𝚯
−1®𝒓

|𝚯| 1
4

𝜕𝜇

𝜕𝑟𝑛𝑥 𝜕𝑟𝑚𝑦 𝜕𝑟 𝑙𝑧
e−®𝒓

⊺
𝚯
−1®𝒓 , (5)

with degree (𝑛,𝑚, 𝑙) ∈ N3 (an ordered 3-tuple of natural integers),
order 𝜇 = 𝑛+𝑚+𝑙 and where 𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 are the Cartesian components
of ®𝒓 . To complete the definition we also introduce the dual of the
anisotropic HG function:

Ψ̃𝚯

𝑛𝑚𝑙 (®𝒓) ≜ |𝚯|−1/2 Ψ𝚯
−1

𝑛𝑚𝑙

(
𝚯
−1®𝒓

)
. (6)

Note that the partial derivatives that arise in the dual function are
taken with respect to the components of the transformed vector.
The anisotropic HG functions are central to our discussion and

their relevant properties are derived in Section S1. Some of these
introduced properties are, to the best of our knowledge, novel. As
the anisotropic HG functions form a complete basis of 𝐿2 functions
(see Section S1 for details), any 𝐿2 function 𝑓 : R3 → C can be
(uniquely) expanded under the Hermite-Gauss basis as

𝑓 (®𝒓) =
∞∑︁

𝑛,𝑚,𝑙=0
𝑓𝑛𝑚𝑙 Ψ𝚯

𝑛𝑚𝑙 (®𝒓) , (7)

where the 𝑓𝑛𝑚𝑙 ∈ C are the Hermite-Gauss coefficients of degree
(𝑛,𝑚, 𝑙) and order 𝑛 +𝑚 + 𝑙 , and our notation reserves inverted-
hat accents for such HG coefficients. The HG coefficients can be
recovered from 𝑓 via the inner product with the dual function:

𝑓𝑛𝑚𝑙 =
〈
𝑓
��� Ψ̃𝚯

𝑛𝑚𝑙

〉
=
∫
R3

d3®𝒓 ′ 𝑓 (®𝒓 ′) Ψ̃𝚯

𝑛𝑚𝑙
(®𝒓 ′) . (8)

In our supplemental material, we prove the important fact that the
anisotropic HG functions and their dual serve as Fourier-transform
pairs:

ℱ

{
Ψ𝚯

𝑛𝑚𝑙

(®𝒓 ′)} (®𝜻 ) = (2π) 3
2 (−i)𝑛+𝑚+𝑙 Ψ̃𝚯

−1

𝑛𝑚𝑙

(
®𝜻
)
. (9)

As an aside, note that the anisotropic Hermite-Gauss are more
expressive than the univariate ones: The partial derivatives in Eq. (5)
are with respect to ®𝒓 before the transformation by the shape matrix
𝚯, therefore Ψ𝚯

𝑛𝑚𝑙
can be written as a simple product of univariate

HG functions (Eq. (S1.1) in our supplemental material) when 𝚯 = 𝑰 ,
but not in general.

3.2 The Cross-Spectral Density
The study of optical coherence is the study of the statistical prop-
erties of light. Our sensors (a camera or the eye) do not observe
the individual oscillations of the light’s underlying electromagnetic
fields, but only the time-averaged values. Therefore, for observable
diffractive optical phenomena (like the interference patterns visible
in Fig. 2) to arise, the light’s waveform must remain statistically
correlated over sufficiently large distances in spacetime. The op-
tical coherence of light can then be understood as the correlation
between the light’s wave constituents over these spacetime regions.
In order to formally describe that correlation, we use a function
of a pair of points—the cross-spectral density—that quantifies the
statistical similarity of waveforms that arrive at these points. This
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subsection serves as a formal introduction of a wave ensemble and
its cross-spectral density function. See Goodman [2015]; Wolf [2007]
for a more in-depth introduction to optical coherence, as well as
Steinberg and Yan [2021] for a comprehensive discussion of optical
coherence under the context of physical light transport.
Let 𝑢 (®𝒓, 𝑡) be a function describing the strength of the electro-

magnetic disturbances in spacetime. 𝑢 is usually understood not as
a deterministic function, but as a stochastic (random) process—a
statistical ensemble of waves—reflecting the fact that light typically
admits random fluctuations in its fields. Then, the central quantity of
interest is the cross-spectral density (CSD) function of that stochastic
process. The CSD is a spatial autocorrelation function, which quan-
tifies the second-order statistics between spectral constituents of 𝑢
(that is, between waves of an identical frequency in the ensemble),
and is defined as the positional power spectrum:

C
(
®𝒓 ; ®𝝃 1, ®𝝃 2 ; 𝜔

)
≜
〈
𝑢
(
®𝒓 + ®𝝃 1

)
𝑢★

(
®𝒓 + ®𝝃 2

)〉
𝜔

, (10)

where the vectors ®𝝃 1,2 describe small offsets around ®𝒓 (the point
around which the CSD is defined). The operator ⟨·⟩𝜔 is the ensemble-
average operator (not to be confused with the inner product!) over
the same-frequency constituents of the wave ensemble.𝜔 = 𝑐𝑘 spec-
ifies the angular frequency of interest, with 𝑘 being the wavenum-
ber, which is related to the wavelength 𝜆 as 𝑘 = 2π/𝜆 . The (time-
averaged) spectral intensity, that is observed at a point ®𝒓 , is propor-
tional to the complex magnitude squared of the underlying field:

𝐼 (®𝒓 ; 𝜔) ≜
〈
|𝑢 (®𝒓) |2

〉
𝜔
= C (®𝒓 ; 0, 0 ; 𝜔) . (11)

When dealing with partially-coherent light, C decays rapidly
with increasing distance between the points at which we evaluate
it (indicating loss of spatial coherence). It therefore makes practical
sense to consider the CSD as the autocorrelation between points in
some confined region in space. This is reflected in our notation: we
arrange the arguments of C into groups. First, ®𝒓 defines the position
in space around which the CSD is defined, and, from the perspective
of our analysis, we fix that position and treat it as a constant. The
second group describes spatial perturbations around ®𝒓 , with respect
to which we evaluate the CSD. Finally, the last group only serves
to make explicit the wavelength-dependence and the fact that we
ensemble-average over same-frequency constituents. For brevity,
we will at times neglect the first and third groups, however the
reader should note the implied dependence on ®𝒓 and 𝜔 .
Validity domain. Eq. (11) holds whenever the ensemble-average

that appears in that equation is a sufficiently good approximation
to a time-average over timescales that are large with respect to
the temporal fluctuations of the wave ensemble. This is true when:
(i) the wave ensemble is an ergodic stochastic process, and then en-
semble-averaging is equivalent to infinite time-averaging; or, (ii) the
radiation is polychromatic: in which case the temporal coherence is
much shorter than the observation time, and second-order statistics
are sufficient [Goodman 2015].
We clearly state the assumptions on the radiation’s coherence

when developing the formulae in Subsection 5.1, and due to the scale
invariance of these formulae, the majority of our theory applies to
light of any (spatial or temporal) coherence. Nevertheless, essentially

source

X

𝒔

𝒓

0

®𝒓

r

C
®𝝃

®𝝃 1

®𝝃 2

Fig. 3. Diffraction of natural light by a matter: A small spatial region X,
centred at the origin 0, scatters light incident from a source at point ®𝒔
(wavefronts illustrated as blue lines). The incident radiation induces elec-
tromagnetic excitations in X (small purple balls), giving rise to scattered
radiation that propagates away from the scattering region to some point ®𝒓
(wavefronts illustrated as red lines). The scattering process induces changes
in the statistical properties of the scattered radiation. A solution to the
diffraction problem is the cross-spectral density function of the diffracted
radiation, C, which is defined at a region around the point ®𝒓 (black dotted
circle) and quantifies the coherence properties and the statistical similarity
of the wave ensemble at a pair of points ®𝝃 1 and ®𝝃 2 in that region.

all the emitters of interest (be it optical sources, like the Sun and
artificial lights, or non-optical: for example, radar) produce partially-
coherent radiation. Furthermore, the rendering equations of physical
light transport, i.e. the spectral-density transport equation [Steinberg
and Yan 2021], assume partially-coherent light, and hence our focus
is limited to these kind of sources and such light.

3.3 Scattering and Diffraction
Our theory of light-matter interaction is formulated under the con-
text of scalar diffraction theory. See Fig. 3 for an illustration of the
geometry of a diffraction problem. Let the matter be confined to
a scattering region X ⊂ R3. The core quantity that describes the
matter response to incident radiation is the scattering amplitude
function, denoted 𝜎 (𝒔 ′, 𝒓 ′ ; ®𝒑′), which describes the amplitude ratio
of the scattered wave in direction 𝒓 ′, produced due to a scattering
event in position ®𝒑′ in the matter or medium and under excitation
by an incident wave from direction 𝒔 ′. The scattering amplitude
function is, in general, wavelength dependant and can take complex
values, quantifying the phase-shifts induced by interaction with
conducting particles.
We are now ready to derive a formula for the CSD function of

the radiation diffracted by the scattering matter. To make analytic
progress we first make the Born first-order approximation, as well
as the usual Fraunhofer (optical far field) region assumption, imply-
ing that the characteristic length of that scattering region is small
with respect to the distances to ®𝒓 (the observation point) and ®𝒔 (the
radiation source that gives rise to 𝑢 ′). The analysis then proceeds in
typical Fraunhofer region fashion, see Subsection S2.1 in our sup-
plemental material for an extended discussion on scalar scattering,
the assumptions involved and proof of Theorem 3.1 that follows.
Then, the formula for the diffracted and propagated CSD under

our formalism of light-matter interaction becomes:
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Theorem 3.1 (Scattering of the Cross-Spectral Density).
Let a scattering region (assumed to be centred around the origin) be
described via a scattering amplitude function 𝜎 , and C′ be the CSD of
the radiation incident to the scattering region from direction 𝒔. Under
the Born first-order approximation and in the Fraunhofer region, the
scattered CSD becomes

C
(
®𝒓 ; ®𝝃 1, ®𝝃 2 ; 𝜔

)
=

ei𝑘 �̂� ·
(
®𝝃 1−®𝝃 2

)

𝜆2𝑟2 𝒜

{
𝛴 · C′

} (
𝑘𝒓 + 𝑘

𝑟
®𝝃 1, 𝑘𝒓 + 𝑘

𝑟
®𝝃 2
)
,

where𝒜 is the angular correlation transform operator (Eq. (3)) and we
define 𝛴 ( ®𝝃 1, ®𝝃 2) = 𝜎 ( ®𝝃 1)𝜎★( ®𝝃 2) as the scattering mutual intensity.

Note that ®𝒓 , ®𝒔 and 𝜔 are held constant and the integration of the
ACT in Theorem 3.1 is done over the variables ®𝝃 1,2 of 𝛴 and C′. It is
assumed that the scattering amplitude function 𝜎 is a slow function
of the incident and exitant directions, thus in the far-field those
directions are held constant and are simply 𝒔 and 𝒓 , respectively. For
brevity, we also drop the explicit dependence on these directions
from the notation of 𝜎 and 𝛴 .

4 LIGHT TRANSPORT IN HERMITE-GAUSS SPACE
Finding solutions to the relation in Theorem 3.1 is, in general, dif-
ficult: Numerically, the six-dimensional Fourier transform is ex-
pensive to compute and, when working with optical frequencies,
accurate results require the computation to be done at a fine resolu-
tion. Analytic progress is frustrated by the fact that the shape of the
incident CSD function, C′, depends on the properties of the emitter
as well as the intermediate interactions of the radiation.
It has been shown [Steinberg and Yan 2021] that in the far-field

region the CSD behaves radially (in the direction of the wave ensem-
ble’s propagation, 𝒓 ) as a spherical wave, while the spatial coherence

of the wave ensemble is only a function of the directions from the
source to the points ®𝒓 + ®𝝃 1 and ®𝒓 + ®𝝃 2. As a consequence, we also
conclude that in the far-field the coherence properties of the light
change slowly around the point of interest ®𝒓 , and therefore the co-
herence properties are simply a function of the difference vector
between the points ®𝒓 + ®𝝃 1 and ®𝒓 + ®𝝃 2 (i.e. a quasi-homogeneous
source), denoted as ®𝝃 = ®𝝃 1 − ®𝝃 2. See Fig. 3 for an illustration of
diffraction by matter, and Fig. 5 for a visualization of the coherence
properties of light.

Our choice of basis. As mentioned, we use a class of multivariate
Hermite-Gauss functions as a functional basis. The motivation is as
follows:

(1) these functions form a complete, orthonormal basis;
(2) CSDs will typically be oscillatory functions (as predicted by

the Fourier optics relation between the incident and scattered
CSDs), and so are the HG functions;

(3) the shape matrix quantifies the spatial coherence of light;
(4) the HG functions are a simple product of a Gaussian with a

polynomial, making them easy to evaluate; and
(5) the HG functions serve as eigenfunctions under the Fourier

transform operator.

The last couple of points are crucial. The Fourier optics relation
exhibited by Theorem 3.1 makes the Hermite-Gauss functions a
compelling choice: It is this analytic amenability of these functions
under the Fourier transform that allows us to make analytic progress
when working in Hermite-Gauss space. In addition, a decomposition
of the CSD under the HG basis is not only mathematically attractive;
it also manifests the underlying physics via the shape matrix, which

𝑛 = 0,𝑚 = 0 𝑛 = 0,𝑚 = 2

𝑛 = 1,𝑚 = 1 𝑛 = 2,𝑚 = 0

𝑛 = 3,𝑚 = 1 𝑛 = 3,𝑚 = 3
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Fig. 4. (left) A few even-ordered anisotropic Hermite-Gauss transverse modes. The shape matrix 𝚯 of the presented modes encodes a rotation and an
anisotropic scale, i.e. 𝚯−1 = 𝑹𝑺 (𝑹𝑺)⊺ , where 𝑹 is a rotation matrix of π

7 radians (around �̂�) and 𝑺 is a diagonal scale matrix with a scale of 2 in �̂� and 1 in �̂�, �̂�.
(right) The HG modes form a functional basis that is able to express a wide variety of CSD functions using a limited number of modes. Observe that as the
shape matrix encodes the coherence shape and area, even with a single mode we can capture some of the important characteristics of the CSD.
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directly quantifies the first-order geometric properties of the spatial
coherence (see Corollary 4.2).
Curiously, the anisotropic HG functions have received virtually

no attention in literature. This can be explained by noting that
when viewed as a functional basis, these functions give rise to an
underdetermined system: given any choice of the shape matrix, the
anisotropic HG functions still constitute a complete orthonormal
basis. This mathematical awkwardness does not deter us, because
in practice only a limited, finite count of HG functions may be used.
See Fig. 4 for a visualization of the first few HG basis functions and
a few CSD functions in HG space.

The CSD in Hermite-Gauss space. Inline with the discussion above,
we can now write the general expression for the CSD in HG space,
as follows:

Definition 4.1 (Far-field CSDwith transverse Hermite-Gaussmodes).
Given quasi-homogeneous radiation that originates from the
origin and has propagated to a point ®𝒓 , its CSD takes the following
analytic form:

C
(
®𝒓 ; ®𝝃 ; 𝜔

)
=

ei𝑘 �̂� ·®𝝃

𝑟2

∑︁
𝑛,𝑚

𝑐𝑛𝑚 Ψ𝚯

𝑛𝑚

(
𝑘
𝑟 𝑸

®𝝃
)
,

with 𝑸 being a constant, orthogonal, basis change matrix that
orients ®𝝃 to the local frame of the wave ensemble, i.e. where �̂�
points in direction of propagation (which is 𝒓 ) and �̂�, �̂� span the
transverse plane (see Fig. 5).

Note that in-place of the pair of spatial parameters, ®𝝃 1,2, in Eq. (10),
we now only have a single parameter ®𝝃 = ®𝝃 1 − ®𝝃 2, i.e. the difference
between the spatial points where we evaluate C. We slightly abuse
notation in Definition 4.1 by writing Ψ𝚯

𝑛𝑚 ≡ Ψ𝚯

𝑛𝑚0, that is, the
order of the 𝑧 component of the HG function (𝑙 in Eq. (5)) is always
0 and is dropped from the notation. Under the paraxial far-field
approximation, the coherence properties remain constant in 𝑧, and
extend to infinity. However, this fact is merely an artefact of the
Fraunhofer region approximation. The 𝑧-dependant 0th-order HG
function (a Gaussian) serves to confine the region over which C
describes coherent radiation to a finite extent, but the exact shape
in the 𝑧 direction is of little importance. Higher-order HG functions
are then reserved only for the transverse directions, and we refer to
each 𝑐𝑛𝑚 ≠ 0 as a Hermite-Gauss transverse mode of the CSD.

The shape matrix 𝚯 serves two purposes: First, it scales the space
of the local frame to match the extent over which the radiation re-
mains spatially coherent. Second, it applies some (invertible) trans-
formation to the transverse 𝑥,𝑦 components of ®𝝃 . The purpose of
that transform is to describe the shape of the transverse area over
which the wave ensemble exhibits spatial coherence. It may en-
code space scaling and rotation, and, more interestingly, anisotropic
scales, shears, etc. This greatly increases the expressiveness of the
CSD, especially when, for practical reasons, we restrict ourselves to
few HG transverse modes (see Fig. 4). The shape matrix together
with the HG transverse modes fully describe the CSD, and the rest
of this section is dedicated to studying these parameters.

The coherence properties. The coherence area, length and volume
[Goodman 2015] quantify the geometric regions over which the
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Fig. 5. The coherence properties of a beam of light are core to our discussion:
The spatial volume over which light, that has propagated to a point ®𝒓 , ex-
hibits optical coherence is illustrated by the red volume and is the coherence
volume. The distance on the propagation axis (in direction �̂� ), over which
the light remains coherent is known as the coherence length. This coherence
length is dictated by the spectral content of the light: polychromatic light
admits very short coherence length, while filtered (pseudo-monochromatic)
light has longer coherence length. The plane that is perpendicular to the
direction of propagation is the transverse plane, and the intersection of the
coherence volume with that plane gives rise to the coherence area (violet
area). The coherence area depends on the properties of the source or the
scattering matter, and may exhibit distinct shapes and anisotropies. Observe
that the coherence area grows linearly, as 𝑟

𝑘
, on free-space propagation. The

beam’s local frame, spanned by �̂�, �̂�, �̂� is illustrated as well.

radiation exhibits coherence and are illustrated in Fig. 5. As previ-
ously alluded to, the shape matrix 𝚯 plays a core role in quantifying
these quantities: It can be understood as the first-order geometric
properties of the beam’s coherence, viz.

Corollary 4.2 (Coherence Properties). Given the CSD, for-
malised using transverse HG modes (Definition 4.1), of a beam of
light, the geometric coherence properties of the light are quantified:

(1) The coherence volume of the beam is ∼ 4π
3 | 2𝑟𝑘 𝚯

1/2 | .
(2) The coherence area is the area of the circle transformed

by the (rank-2) matrix 2𝑟
𝑘 𝚯

1/2𝑷⊥, where 𝑷⊥ = diag {1, 1, 0}
projects onto the transverse plane. Explicitly, this can be
written as ∼π( 2𝑟

𝑘 )2∥𝚯1/2𝑷⊥∥2∥𝚯−1/2𝑷⊥∥ −1
2 .

(3) Similarly, the coherence length is ∼ ∥ 4𝑟
𝑘 𝚯

1/2𝑷 q∥2, with the
projection 𝑷 q = diag {0, 0, 1} onto the direction of propaga-
tion.

(4) Coherence anisotropy (in the transverse plane) is charac-
terised by the matrix condition number cond2 (𝚯1/2𝑷⊥), i.e.
the ratio between the two non-zero singular values of𝚯

1/2𝑷⊥.

Proof. The Gaussian term of the HG functions (Eq. (5)) is the
dominant term, hence the coherence volume, area and length are
simply the regions where that Gaussian remains non-negligible,
i.e. roughly while ( 𝑘𝑟 ®𝝃 )

⊺
𝚯
−1 ( 𝑘𝑟 ®𝝃 ) < 2 (the cut-off value of 2 was
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chosen ad hoc). The properties then follow via spectral analysis of
the Jacobians of the transformations. □

Therefore, given a CSD expanded in HG space, we can immedi-
ately extract these important light characteristic directly from the
shape matrix. Note that the origin is set to be radiation source, as
in Definition 4.1, thus 𝑟 is the distance of (free-space) propagation.

The HG coefficients are real and of even order. Consider a CSD
expressed using transverse HG modes (as in Definition 4.1). Observe
that C(®𝝃 ) = C★(−®𝝃 ), directly from the definition (Eq. (10)), that
exp(i𝑘𝒓 · ®𝝃 ) is a Hermitian function and that an HG function of
even order is an even function, otherwise it is an odd function (see
Eq. (S1.8) in our supplemental material). These facts hold for any ®𝝃
and we deduce that (i) 𝑐𝑛𝑚 = 𝑐★𝑛𝑚 , i.e. the HG modes are real; and
(ii) odd-ordered HG modes must vanish, viz. 𝑐𝑛𝑚 = 0 when 𝑛 +𝑚 is
odd.
For a physical insight, observe that the Fourier transform of

an odd-ordered HG function is purely imaginary, and of an even-
ordered HG function purely real (see Eq. (9)), with the interpretation
being: Diffracted even-ordered modes fully propagate to the far field,
while odd-ordered modes only give rise to evanescent waves, which
do not propagate nor contribute to far-field radiation.

4.1 Light-Matter Interaction
We return to our discussion of light-matter interaction. As before, let
a light source (primary or secondary) at ®𝒔 give rise to radiation that
is incident to a small scattering region, centred at the origin, with
scattering amplitude function 𝜎 , and scattering mutual intensity
𝛴 ( ®𝝃 1, ®𝝃 2) = 𝜎 ( ®𝝃 1)𝜎★( ®𝝃 2). The incident light interacts with matter
and scatters and diffracts to a point ®𝒓 .
Plug Definition 4.1 into Theorem 3.1 and in our supplemental

material we outline the lengthy derivations that follow, which ulti-
mately result in the following Lemma:

Lemma 4.3 (Light-Matter Interaction: The Hermite-Gauss
Transverse Modes). A scattered Hermite-Gauss transverse mode
relates to the incident Hermite-Gauss transverse modes and shape
matrix, 𝑐 ′𝑛𝑚 and 𝚯′, via the scattering mutual intensity, 𝛴 , as follows:

𝑐𝑛𝑚 =
(2π) 3

2 (−i)𝑛+𝑚
𝑠2𝜆2

∑︁
𝑛′,𝑚′

𝑐 ′𝑛′𝑚′

×𝒜

{
𝛴 · Ψ𝚯

−1
𝑛𝑚

(
𝑸

®𝒓 ′1+®𝒓 ′2
2

)
Ψ𝚯

′
𝑛′𝑚′

(
𝑘𝑸 ′ ®𝒓 ′1−®𝒓 ′2

𝑠

)} (
®𝝓, ®𝝓

)
,

with the shorthand ®𝝓 = 𝑘 (𝒓 + 𝒔). The variables ®𝒓 ′1,2 are the ACT
integration variables and the orthogonal matrices 𝑸,𝑸 ′ transform to
the local frame of the scattered and incident radiation, respectively.

Proof. See Subsection S2.2 in our supplemental material. □

The shape matrix. Lemma 4.3 holds for arbitrary shape matrices
𝚯. This is not a coincidence: recall that the anisotropic HG functions
form a complete functional basis, regardless of the choice for 𝚯. In
practice, only a finite count of HG modes will be used, hence, to
complete the parameterization of the CSD of the scattered field, we
turn our attention to devising a formula for the shape matrix 𝚯.
Derived next is the following curious relation:

Lemma 4.4 (Light-Matter Interaction: The Coherence Shape
Matrix). Given 𝚯

′, the shape matrix of the incident radiation, and
𝜎 , the scattering amplitude function, the shape matrix of the scattered
radiation is:

𝚯 = −𝑸⊺ ·
[
𝜕2

𝜕®𝒘2 ln𝒻00

]−1

®𝒘=0
· 𝑸 ,

with the 0th-order scattering mode:

𝒻00 ( ®𝒘) ≜ 𝒜
{
𝛴 · Ψ𝚯

′
00

(
𝑘𝑸 ′ ®𝒓 ′1−®𝒓 ′2

𝑠

)} (
®𝝓 + 1

2 ®𝒘, ®𝝓 − 1
2 ®𝒘

)
.

That is, the shape matrix is related via a similarity transform to the
inverse of the Hessian matrix of the natural logarithm of the 0th-order
scattered mode.

Proof. See Subsection S2.3 in our supplemental material. □

Lemmas 4.3 and 4.4 constitute the theoretical foundations of light
transport and light-matter interaction in HG space.
Observe that the matrix produced by Lemma 4.4 is expected to

be positive-definite, as required: The 0th-order scattering mode 𝒻00
is the autocorrelation of the scattered radiation with separation
®𝒘 , which is expected to attain a local maximum at ®𝒘 = 0. The
logarithm of that concave function will also attain a local maximum
at ®𝒘 , thus the Hessian is negative-definite, its additive inverse is
then positive-definite and definiteness is invariant under matrix
inversion. Nevertheless, due to peculiarities in the matter behaviour
and numerical issues, at times the generated matrix might become
semi-definite or indefinite. In practice, it is then desired to ensure
physical correctness by flipping the signs of negative singular values
of 𝚯, if any, and, for numeric stability, clipping the singular values
to a small 𝜖 > 0.

5 SCATTERING WITH LOCALLY-STATIONARY MATTER
We now take a closer look at how we describe physical matter and
its response to incident radiation.

As discussed, it is desirable to quantify the micro-scale scattering
properties of the matter statistically. To that end, we now consider
the scattering amplitude function 𝜎 as a (spatial) stochastic process,
in which case the mutual scattering function is in fact the auto-
correlation of the process, viz. 𝛴 (®𝒓1, ®𝒓2) = ⟨𝜎 (®𝒓1)𝜎★(®𝒓2)⟩. We also
restrict 𝜎 to be a locally-stationary stochastic process. The class of
locally-stationary processes was introduced by Silverman [1957] as
a generalization of wide-sense-stationary processes, and the auto-
correlation of such a process can be written as

𝛴 (®𝒓1, ®𝒓2) =
〈���𝜎 ( ®𝒓1+®𝒓2

2

)���2
〉
𝑅𝜎𝜎 (®𝒓1 − ®𝒓2) , (12)

where 𝑅𝜎𝜎 is a normalised (i.e.,
∫
𝑅𝜎𝜎 = 1) spatial stationary au-

tocorrelation function, which is a function of the spatial difference
vector between the points ®𝒓1,2. The ensemble-averaged scattering
intensity above is the local, averaged (over the ensemble of all mat-
ter realizations) ratio between the scattered and incident intensity,
and thus is directly related to the classical BSDF. Its (spatial) Fourier
transform is the (averaged, spectral) scattering angular coherence (a
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consequence of the Van Cittert–Zernike theorem [Born and Wolf
1999]), viz.

˜𝑓𝜎
(
®𝜻
)
≜ℱ

{〈 |𝜎 |2〉 } . (13)

Note the implicit dependence of all functions and quantities that
describe the light-matter interaction process, 𝜎, 𝛴, 𝑅𝜎𝜎 and ˜𝑓𝜎 , on
wavelength as well as the incident and scattered directions 𝒔, 𝒓
remains. The ensemble-averaging operator ⟨·⟩ that appears above
averages over the ensemble of all surface realizations, and should
not be confused with ⟨·⟩𝜔 , which averages over same-frequency
constituents of the wave ensemble.

Beforewe discuss the practical and physical significance of locally-
stationary matter, we first state that the stationary autocorrelation
𝑅𝜎𝜎 and the angular coherence ˜𝑓𝜎 , together, fully describe the pro-
cess of light interaction with the matter, and present the primary
theoretical contribution we make in this paper:

Theorem 5.1 (Interaction with Locally-Stationary Mat-
ter in Hermite-Gauss Space). Let 𝜎 be the matter’s locally-
stationary scattering amplitude, and 𝑅𝜎𝜎 be its stationary autocor-
relation. We set ®𝝓 = 𝑘 (𝒓 + 𝒔), as before. Then,

(i) the scattered HG transverse modes become:

𝑐𝑛𝑚 =
〈

˜𝑓𝜎
��� Ψ̃𝚯

𝑛𝑚
(
𝑸®𝒓 ′)〉 ∑︁

𝑛′,𝑚′

𝑐 ′𝑛′𝑚′

𝑠2𝜆2 ℱ
{
𝑅𝜎𝜎 Ψ𝚯

′
𝑛′𝑚′

(
𝑘𝑸′®𝒓 ′

𝑠

)} (
®𝝓
)
,

(ii) and, the shape matrix is:

𝚯 = 𝑸
⊺ ·

[
𝜕2

𝜕®𝜻 2 ln ˜𝑓𝜎
(
®𝜻
)]−1

®𝜻=0
· 𝑸 .

Proof. Make the variable substitutions ®𝒓 ′′1 = ®𝒓 ′1 − ®𝒓 ′2 and ®𝒓 ′′2 =
1
2 (®𝒓 ′1 + ®𝒓 ′2) in Lemmas 4.3 and 4.4, which decouple the ACT into
independent FTs. Theorem 5.1.(ii) follows immediately by the fact
that multiplicative constants in the logarithm annihilate under the
derivative. Apply the convolution theorem as well as the HG func-
tion identities Eq. (9) and Eq. (S1.8) (in the supplemental material),
the convolution then reduces to the inner product with the dual HG
function, yielding Theorem 5.1.(i). □

We summarise some notable features of the theorem above:
• Two independent terms arise: (i) The inner product of the
angular coherence function ˜𝑓𝜎 with the dual HG functions.
This term does not dependent on the coherence of the incident
light. (ii) The interference term, i.e. the FT of the stationary
autocorrelation 𝑅𝜎𝜎 with the incident HG transverse modes.

• The sum over the incident modes in Theorem 5.1.(i) does not
depend on the indices 𝑛,𝑚 and can be computed once, thus
the computational complexity is now linear in the count of
HG modes, as opposed to quadratic.

• As the shapematrix (Theorem 5.1.(ii)) also depends only on ˜𝑓𝜎 ,
the ensemble-averaged scattering behaviour fully quantifies
the coherence shape of the scattered radiation. Meanwhile,
interference only depends on the autocorrelations of both the
matter and the incident light’s coherence.

• That interference term reduces to a simple, computationally-
tractable Fourier optics relation. Furthermore, these formulae

are generally devoid of the highly-oscillatory phase terms
that are typical with such diffraction integrals. This is because
we only need to consider the statistical correlations of the
matter’s scatter behaviour and incident coherence.

The analytic form of the autocorrelation of locally-stationary
matter, viz. Eq. (12), should be understood as matter where the
ensemble-averaged scattering intensity, ⟨|𝜎 (®𝒓) | 2⟩, is a slow function
compared to 𝑅𝜎𝜎 , i.e. it changes slowly with respect to the distances
over which 𝜎 remains correlated. As previously discussed, a purely
deterministic description of matter is infeasible due to the resolution
needed to quantify interactions with light of optical frequencies. On
the other hand, a purely statistical description is less interesting: It
is the irregularities in the matter that give rise to distinct diffractive
phenomena. Formally, this is a consequence of the fact that 𝚯 only
depends on an ensemble-averaged quantity (Theorem 5.1.(ii)), which
averages away phase differences between scattered wavefronts,
and thus only matter features that survive the ensemble-averaging
contribute to 𝚯.
Thus, by endowing ⟨|𝜎 | 2⟩, a quantity closely related to the clas-

sical BSDF, with a stationary autocorrelation function—thereupon
transforming it into a locally-stationary stochastic process—we in-
troduce a matter model which allows us to practically superpose sta-
tistical perturbations of the matter over the broader explicit features
that induce interesting scattering behaviour (e.g., imperfections
and irregularities in the matter). Under that context, Theorem 5.1
provides computationally-tractable formulae for light-matter inter-
action in Hermite-Gauss space. While, so far, all of our derivations
have been mathematically exact (up to the optical assumptions that
led to Theorem 3.1) and very general, the simple analytic relations
and well-behaved quantities in Theorem 5.1 suggest that for more
specific types of matter, simpler relations could be found.
See Subsection S2.4 in our supplemental material for additional

notes on computing the shape matrix via Theorem 5.1.(ii).

Perfectly specular reflectors. One type of surface that cannot be
directly described by Theorem 5.1 is a perfect mirror. A perfect
specular reflector is a notorious violator of the Fraunhofer region
assumption, specifically the assumption that the scattering ampli-
tude function 𝜎—now a very sharp impulse, a Dirac delta—changes
slowly with the directions 𝒓, 𝒔. This is an issue that afflicts any scat-
ter theory formulated under Fresnel or Fraunhofer optics, and it
is common to separate the interaction into a “specular lobe” and a
“scattered lobe”: Harvey [2012] do so by introducing an exponential
term that partitions the reflected energy between these lobes based
on surface roughness. That very same approach was also used by
Holzschuch and Pacanowski [2017].
A perfectly specular reflection (or refraction) does not change

the coherence properties of light [Steinberg and Yan 2021]. Also,
as the energy is concentrated in a sharp impulse regardless of the
coherence of light, such surfaces constitute the simplest kind of
light-matter interactions and are easy to path trace. For simplicity,
in our implementation we classify matter into specular surfaces and
everything else, however superposing specular and non-specular
lobes could be done as well.
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®𝝃
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𝒔𝒓

〈
|𝜎 ( ®𝝃 ) | 2

〉

surface

(c)

𝜏
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𝑅2
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®𝜶 11 ®𝜶 21 ®𝜶 31 ®𝜶 41

diffraction grating element

(e)

Fig. 6. Examples of light-matter interaction that we discuss in this paper. (a) Sourcing of partially-coherent light: Charges and current in a light source give rise
to electromagnetic radiation. The amount of charge together with its spatial correlation fully describe the emitted radiation and its coherence properties. (b)
Scatter by a statistical surface: A surface (brown) is decomposed into its spatial frequencies (illustrated in gray). The power of each frequency is given by the
power spectral density (PSD) function 𝑆surf, which plays an important role in describing the scattered radiation. (c) Scatter by explicitly-defined microgeometry:
A surface patch is described by the (explicit) height perturbations ℎ ( ®𝝃 ) , where ®𝝃 is a point on the surface plane (gray dashed line). As always: �̂�, �̂� are the
incident and exitant directions and ⟨ |𝜎 ( ®𝝃 ) | 2 ⟩ is the (ensemble-averaged) reflectivity (i.e. scattered intensity). (d) Layered structure: A dielectric layer over a
substrate, where the surface of each is described statistically via the stationary autocorrelation functions 𝑅1 and 𝑅2, respectively. The surfaces are assumed
to be statistically independent. (e) Diffraction grating: A two-dimensional grid of small and identical, but otherwise arbitrary, optical elements produces a
diffraction grating. The elements are regularly spaced and the position of the center of each element is denoted ®𝜶𝑝𝑞 .

5.1 Examples
We now present a few examples and revisit some of the topical
problems in computer graphics that involve rendering diffractive
phenomena. The purpose of this subsection is two-fold: to present
example applications as well as compare our formalism with some
of the state-of-the-art. It should be remembered that the primary
motivation behind our work is not the reproduction of material
appearance, but the understanding of how light-matter interaction
affects the coherence properties of light and the transport of these
properties. Hence, there is a significant qualitative difference in the
information produced by our methods compared with the state-of-
the-art: We fully quantify the coherence properties of the scattered
light and not merely the scattered intensity.
See Fig. 6 for an overview of the types of matter we discuss in

this subsection.

Light sources. Emission of partially-coherent light by a light source
is a special case of light-matter interaction: Electromagnetic ra-
diation arises due to a time-varying distribution of charge and
current within a source. The ensemble-averaged scattering inten-
sity ⟨|𝜎 (®𝒓) | 2⟩ plays the role of the time-averaged power that flows
through a differential volume element, and 𝑅𝜎𝜎 is the autocorrela-
tion function of that distribution of power within the source (see
Fig. 6a). For spontaneous emission sources, that spatial correlation
is negligible [Carminati and Greffet 1999] and we set 𝑅𝜎𝜎 = 𝛿3, i.e.
a spatial Dirac delta. The sourcing equation for partially coherent
light then becomes the inner product

𝑐𝑛𝑚 =
1
𝜆2

〈
˜𝑓𝜎
��� Ψ̃𝚯

𝑛𝑚
(
𝑸®𝒓 ′)〉 , (14)

which simply is the HG coefficient of degree (𝑛,𝑚, 0) of 1
𝜆2

˜𝑓𝜎 . If the
time-averaged power is mostly constant throughout the source (the
entire source radiateswith similar intensity), then ˜𝑓𝜎 = Λ(𝜔)ℱ {

1X
}
,

where 1X is the characteristic function of the source geometry X
(that function takes values of 1 inside the source and 0 outside), and
Λ is the emitted power spectral density. For a spherical source, ˜𝑓𝜎 is
proportional to a Bessel function of the first kind. This agrees with

Steinberg and Yan [2021], though note that our formalism is able
to describe sources with spatially-varying emission characteristics
as well. Once ˜𝑓𝜎 is computed, the shape matrix and HG coefficients
follow immediately. See our sample implementation in our sup-
plemental material for an example with spherical and cylindrical
sources.

Scatter by statistical surfaces. Due to the previously discussed
practical reasons, it is appealing to describe surfaces statistically.
Over the last few years, the Harvey-Shack and related surface scatter
theories have seen significant adoption in computer graphics (e.g.,
Holzschuch and Pacanowski [2017]; Steinberg and Yan [2021a]).
These surface scatter theories operate on the power spectral density
(PSD) of the surface, which is convenient, as it is often the PSD
that is measured from a physical surface sample, and not explicit
geometry [Siewert et al. 2008]. The PSD is simply the FT-pair of the
stationary autocorrelation, hence any statistical description via a
PSD can be carried out exactly under our formalism (a restatement
of the fact that locally-stationary stochastic processes generalise
wide-sense-stationary processes).

Assume that the surface spans the (local) 𝑥𝑦-plane, and the sur-
face’s two-dimensional autocorrelation and PSD functions are de-
noted as 𝑅surf and 𝑆surf = ℱ

{
𝑅surf

}
, respectively. The stationary au-

tocorrelation of the scatter process is then 𝑅𝜎𝜎 = 𝑅surf (𝑟𝑥 , 𝑟𝑦) 𝛿 (𝑟𝑧)
(assuming 𝑅surf is normalised and constant surface reflectivity), with
the Dirac delta encoding the fact that we deal with a surface. If we
were to assume that the height perturbations of the surface and
the spatial correlation length (the length over which the surface
remains correlated) are small with respect to the coherence area of
light, then the FT in Theorem 5.1.(i) becomes dominated by the 𝑅𝜎𝜎
term, and a closed-form expression is derived

𝑐𝑛𝑚 ≈
〈

˜𝑓𝜎
��� Ψ̃𝚯

𝑛𝑚
(
𝑸®𝒓 ′)〉 ∑︁

𝑛′,𝑚′

𝑐 ′𝑛′𝑚′

𝑠2𝜆2 Ψ𝚯
′

𝑛′𝑚′ (0)ℱ
{
𝑅𝜎𝜎

} (®𝝓⊥
)

=
1
𝜆2

〈
˜𝑓𝜎
��� Ψ̃𝚯

𝑛𝑚
(
𝑸®𝒓 ′)〉 C′(0)𝑆surf

(
®𝝓⊥

)
, (15)
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where C′(0) is the intensity of the incident radiation, ®𝝓 = 𝑘 (𝒓 + 𝒔)
(with 𝒔, 𝒓 being the direction to the source and scattering direction,
respectively) as defined in Lemma 4.3 and ®𝝓⊥ is the projection of ®𝝓
onto the surface (the 𝑥𝑦-plane). This is indeed the relation predicted
by the generalised Harvey-Shack and Rayleigh–Rice scatter theories
[Krywonos 2006]: The scattered intensity is proportional to the
surface PSD, evaluated at the spatial frequency of the diffraction
lobe, which is precisely ®𝝓⊥. As we require 𝑅𝜎𝜎 to be normalised,
the constants (describing the surface reflectivity) are captured by
˜𝑓𝜎 . Assuming the reflectivity remains roughly constant across the
surface (which is the assumption taken by these theories), then the
scattering surface patch acts as a homogeneous secondary light
source, and indeed the shape matrix takes the same form as in the
case of sourcing of light.

It is important to note that while matter that is purely stationary
(at least in the wide-sense) is formally possible, such matter is aphys-
ical, as stationarity implies that ⟨|𝜎 | 2⟩ is a positive constant and
the scattering region extends to infinity. Moreover, the formula for
𝚯 (Theorem 5.1.(ii)) diverges under stationarity, which indeed cor-
rectly reflects the physics: radiation sourced from a radiator with an
infinite extent is perfectly-incoherent, and thus does not propagate
[Wolf 2007] (in addition to requiring infinite energy). Therefore, ˜𝑓𝜎
should restrict the scattering region to a (small) finite region.

Diffractive microgeometry. Consider a surface with an explicit
heightmapℎ(𝑥,𝑦), and let𝑎 be the (potentially complex and spatially-
varying) reflectivity of the surface. The scattering amplitude func-
tion can be formulated by encoding the phase-shifts induced by
height variations, and written as 𝜎 ( ®𝝃 ) = 𝑎( ®𝝃 ) exp[i( ®𝝃 +ℎ( ®𝝃 )�̂�) · ®𝝓],
where ®𝝃 is a position on the surface. The angular coherence becomes
˜𝑓𝜎 = ℱ{|𝑎 | 2} (as the data is deterministic, the ensemble-averaging
operator is dropped), the FT of BRDF of the surface. The shape
matrix follows immediately (via Theorem 5.1.(ii)), and observe that
in general coherence anisotropy (Corollary 4.2) will arise due to spa-
tial variations in reflectivity or the Lambertian term. The stationary
autocorrelation is then the convolution

𝑅𝜎𝜎
(
®𝜻
)
= 𝛿 (𝜁𝑧) 1

|X|
∫
X

d2®𝒓 ′ 𝜎 (®𝒓 ′)𝜎★(®𝒓 ′ − ®𝜻
)

(16)

(up to a normalization of the convolution), where X is the surface
patch and |X| is its area. The convolution over the limited extent
implies that we understand the surface as a periodically tiled—thus,
stationary—signal. The tiling is merely an artefact, as ˜𝑓𝜎 restricts the
light-matter interaction to the surface extent anyhow. Consequently,
any matter described deterministically over a limited extent can be
formulated in an exact manner as locally-stationary matter.

The above is an essentially identical expression to the one derived
by Steinberg and Yan [2021], with same computational complexity.
Unfortunately, the “nice” analytic properties of Theorem 5.1 are
tainted by the fact that the highly-oscillatory exponent arises in
the signal 𝜎 . This is unavoidable when deterministically describing
the matter on sub-micro-scale resolution, and a statistical approach
should be preferred. For this reason we do not render surfaces with
explicitly-defined microgeometry.

sou
rcesource

Fig. 7. Thin-film interference with partially-coherent light: A solid silver
scarab, 14.60 cm in width (body), with a 1.23 µm coating applied to the wings
is illuminated by a (left) spherical fluorescent light source of radius 0.60 cm
(illustrated in blue), located about 60 cm away from the scarab, admitting
a coherence area of about 15 µm × 15 µm. Interference patterns are clearly
visible. (right) The same scarab is now illuminated by a cylindrical source
of length 20 cm and radius 0.10 cm. Both sources radiate with identical
spectrum and radiant power, however the coherence of the radiation from
the cylindrical source is highly anisotropic: it remains coherent over 50 µm in
one transverse direction but less than a micron in the other. The dotted red
line indicates the scarab’s surface where the normal vector is perpendicular
to the length of the light source. As the surface curves away from the
indicated area, the interference pattern gradually disappears due to the
coherence anisotropy, and as predicted by Eq. (18).

Layered structures. Just as any matter with a purely deterministic
(periodic or of limited extent) or a purely stochastic (of a wide-sense-
stationary nature) description can be captured by our formalism,
we can also model matter with a hybrid description.

Consider a layer made of some homogeneous dielectric of thick-
ness 𝜏 placed on top of a substrate (illustrated in Fig. 6d). Let the
autocorrelation of the surface geometries of the top and bottom inter-
faces be 𝑅1, 𝑅2, respectively, and for simplicity assume both surfaces
have identical reflectivity. The autocorrelation of the surfaces then
is 𝑅surf = 𝑅1 + 𝑅2, assuming both are zero-mean, uncorrelated pro-
cesses. Convolving in a like manner to Eq. (16), the autocorrelation
in the 𝑧 direction becomes

𝑅(𝑧) =𝛿 (𝑧) + 𝛿 (𝑧 − 𝜏) (17)

and the stationary autocorrelation is 𝑅𝜎𝜎 = 𝑅surf (𝑟𝑥 , 𝑟𝑦)𝑅(𝑟𝑧). Let
𝑆surf = ℱ{𝑅surf} be the PSD, then

ℱ

{
𝑅𝜎𝜎 Ψ𝚯

′
𝑛′𝑚′

(
𝑘𝑸′®𝒓 ′

𝑠

)} (
®𝝓
)
= 𝑆surf

(
®𝝓⊥

)
×
[
Ψ𝚯

′
𝑛′𝑚′ (0) + Ψ𝚯

′
𝑛′𝑚′

(
𝑘
𝑠 𝜏𝑸

′�̂�
)
e−i𝜏𝜙𝑧

]
. (18)

The first term is the scatter of the statistical surfaces and the second
is the interference between the layers, both expressed in closed-
form. The real part of the exponent is cos(𝜏𝜙𝑧), which encodes
the (average) phase-difference between the reflected wavefronts, in
agreement with well-known optics. The HG function modulates the
interference with respect to the spatial coherence at a distance of 𝜏
in the (local) 𝑧 direction. Observe that this directional dependence
implies that coherence anisotropies in the incident beammay induce
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distinct visual responses, even if the incident spectral intensity and
coherence area are held constant (see Fig. 7).
In the above simple example, the autocorrelation naturally de-

composes into the surface autocorrelation and the autocorrelation
of the deterministic layer structure. However, by using the fact that
the autocorrelation of uncorrelated (zero-mean) processes is the
sum of their autocorrelation functions, more interesting hybrid con-
figurations can be constructed, e.g., the embedding of statistically
distributed and oriented micro-flakes into a layer of resin.

Diffraction grating. Let a single scattering element be charac-
terised by its scattering amplitude function. If we position such
elements, adjacent and parallel to each other, in a two-dimensional
grid extending to infinity on the 𝑥𝑦-plane, we get an ideal diffraction
grating. Naturally, this is a periodic structure and the autocorre-
lation 𝑅𝜎𝜎 of the entire grating is computed simply as in Eq. (16).
Consider now the FT in Theorem 5.1.(i). Rewrite that FT integral as
a sum of integrals, each over the spatial extent of a single element
in the grating. By making the assumption that the spatial extent
of each element is much smaller than the spatial coherence of the
incident light, the HG function remains effectively constant over an
element. Then, by recalling that the autocorrelation of a periodic
signal is also periodic with same period (the spatial extent over
an element) and applying the translation property of the Fourier
transform, we get

ℱ

{
𝑅𝜎𝜎 Ψ𝚯

′
𝑛′𝑚′

(
𝑘𝑸′®𝒓 ′

𝑠

)} (
®𝝓
)
= ℱ

{
𝑅𝜎𝜎

} (®𝝓⊥
)

×
∑︁
𝑝,𝑞

e−i ®𝜶𝑝𝑞 · ®𝝓 Ψ𝚯
′

𝑛′𝑚′
(
𝑘𝑸′
𝑠 ®𝜶𝑝𝑞

)
, (19)

with 𝑝, 𝑞 ∈ Z indexing the elements and ®𝜶𝑝𝑞 being the center
position of an element (see Fig. 6e). The positions ®𝜶𝑝𝑞 are periodic,
and we immediately recognise the sum above as a Fourier series.
Applying our assumption that the spatial extent of the elements is
small, and employing again the well-behaviour of the HG functions
under the FT, we arrive at a closed-form expression:

ℱ

{
𝑅𝜎𝜎 Ψ𝚯

′
𝑛′𝑚′

(
𝑘𝑸′®𝒓 ′

𝑠

)} (
®𝝓
)
=
(
𝑠
𝑘

)2
𝑆𝜎𝜎

(
®𝝓⊥

)
Ψ̃(𝚯′)−1

𝑛′𝑚′
(
𝑠𝑸′
𝑘

®𝝓⊥
)
, (20)

with 𝑆𝜎𝜎 being the PSD of the diffraction grating.
This result is very similar to the statistical surface scatter formula,

Eq. (15), and the difference reflects the fact that a typical surface ad-
mits short correlation lengths, while diffraction grating remains cor-
related across the entire surface. Note that under partially-coherent
illumination, diffraction lobes will attenuate with greater lobe orders
(as the magnitude of the projection of ®𝝓 onto the surface becomes
greater with each lobe), as expected (this effect is rendered in Fig. 1).

Optical speckle. Consider a volume 𝑉 ⊂ R3 that contains 𝑁
infinitesimal scattering particles, each scattering uniformly. The
volume’s scattering function can then be written as a sum of the
isotropic scattering function multiplied by spatial dirac deltas, viz.
𝜎 (®𝒓) = ∑

𝑗 𝑎 𝑗 𝛿
3 (®𝒓 − ®𝒑 𝑗 ), where ®𝒑 𝑗 are the particles positions and

𝑎 𝑗 are the real, non-negative scattering coefficients. Then,〈
˜𝑓𝜎
��� Ψ̃𝚯

𝑛𝑚
(
𝑸®𝒓 ′)〉 = ∑︁

𝑗𝑙

e−i®𝒔𝑙 ·®𝒑 𝑗𝑎 𝑗𝑎𝑙 Ψ̃𝚯

𝑛𝑚
(
𝑸 ®𝒑𝑙

)
, (21)

which is a closed-form expression for the HG-coefficients of the
expansion of the angular coherence function ˜𝑓𝜎 . More importantly,

ℱ

{
𝑅𝜎𝜎 Ψ𝚯

′
𝑛′𝑚′

(
𝑘𝑸′®𝒓 ′

𝑠

)} (
®𝝓
)

=
1
|𝑉 |

∫
R3

∫
𝑉

d3®𝒓 ′ d3®𝝃 ′ 𝜎
(
®𝝃 ′
)
𝜎★

(
®𝝃 ′ − ®𝒓 ′

)
Ψ𝚯

′
𝑛′𝑚′

(
𝑘𝑸′®𝒓 ′

𝑠

)
e−i®𝒓 ′ · ®𝝓

≈
∑︁

𝑗𝑙
Ψ𝚯

′
𝑛′𝑚′

(
𝑘𝑸 ′ ®𝒑𝑙−®𝒑 𝑗

𝑠

)
𝑎 𝑗𝑎𝑙e

−i
(
®𝒑𝑙−®𝒑 𝑗

)
· ®𝝓

, (22)

where we first applied Eq. (16), as in the case of a deterministic
surface (technically, the second equality is only exact in the𝑉 → ∞
limit). The sum above is the superposition of partially-coherent
speckle contributions, where the HG function simply quantifies
how correlated are the waveforms that are scattered from a pair
of particles. This equation defines partially-coherent speckle, and
indeed it is the discretization (in HG space) of the expression for
partially-coherent speckle intensity of Steinberg and Yan [2021a,
p.8,eq.16]. Consequently, typical analysis of partially-developed
speckle and sums of correlated speckle patterns apply [Goodman
2020] and the relevant speckle phenomena—like the well-known
memory effect—can be reproduced without any special treatment.
Monte-Carlo integrators developed by the computer graphics com-
munity to render (far-field) speckle [Bar et al. 2019; Steinberg and
Yan 2021a] may be used to solve Eq. (22) when 𝑁 is large.

The value of the analysis above is mostly academic: it serves
to show that far-field, spatial speckle—like many far-field optical
phenomena—is immediately describable and reproducible by our
theory. However, the analysis above is confined to deterministically-
described scattering particles. Speckle and scattering by media are
phenomena that are mostly statistical in nature. Of more interest is
an examination of partially-developed speckle produced by general
locally-stationary media, which is left for future work.

5.2 Rendering and Implementation
Rendering was done using a proof-of-concept implementation in
Mitsuba, building upon the foundations developed by Steinberg
and Yan [2021]. We extend the bi-directional integrator bdpt to
propagate coherence information in Hermite-Gauss space, and im-
plement light-matter interaction using the core ideas formulated in
this paper.
Light is sourced using Eq. (14) and each traced ray carries the

shape matrix, transverse HG coefficients, the propagation direction
and distance 𝑟 . This is sufficient information to evaluate the CSD as
defined by Definition 4.1. As discussed, some surfaces allow forward
and backward path tracing: The rough statistical surfaces (materials
(d) and (e) in Fig. 1) are rendered using Eq. (15), and as the coherence
properties of the incident light play no role in that formula, standard
bi-directional path tracing with importance sampling applies. To
speed-up convergence, these surfaces were importance sampled via
the classical microfacet BRDF with manually tweaked parameters.
Importance sampling Eq. (15) is left for future work. The scattering
region was assumed to be circular and the HG coefficients of the
angular coherence function were precomputed. Also, the specular
dielectric upper layer of the DVD disks is considered to be a perfect
specular reflector, and scatters as a Dirac delta without affecting the
coherence properties of light. When scattered by such a reflector, 𝑟 is

ACM Trans. Graph., Vol. 40, No. 6, Article 283. Publication date: December 2021.



283:14 • Shlomi Steinberg and Ling-Qi Yan

(1)

(2)

(3)

(1a) (1b) (1c)

(2a) (2b) (2c)

(3a) (3b) (3c)

a
b

c

a
b

c

a
b

c

8s
pp

32
sp
p

12
8s
pp

10
24

sp
p

8s
pp

32
sp
p

12
8s
pp

10
24

sp
p

8s
pp

32
sp
p

12
8s
pp

10
24

sp
p

physical light transport (PLT) PLT PLT PLTradiometric radiometric radiometric

Fig. 8. (left) A large golden scarab with polished body and unpolished, rough wings, that are coated with a moderately thick dielectric, is illuminated by a
short-spectrum light source of varying size. A smaller copper scarab with rough body and (uncoated) polished wings is placed at the bottom. A rectangular
mirror, on the right, reflects light from the source back towards the golden scarab. The mirror and the polished small scarab’s wings act as Dirac delta perfect
reflectors (see Section 5). Hence, light incident upon the golden scarab after reflection off the mirror is more coherent than light that arrives directly from the
source: the right wing showcases more pronounced interference patterns than the left. Rendered with 8192spp. (right) We compare our coherence-aware
physical light transport (PLT) with radiometric light transport (RLT) where the golden scarab’s wings are rendered the method by Belcour and Barla [2017]. Each
of the insets is a close-up on an area outlined in the full image, rendered with increasing samples-per-pixel. RLT mimics spatial coherence by superpositioning
many plane waves sourced from different points on the source and insets (a,b) show decent agreement between the produced patterns. However, to avoid
aliasing many such samples are needed: observe the colourful noise artefacts in the RLT insets, which mostly disappear only with 1024spp and do not exist at
all with PLT. The required sample count becomes particularly untenable with indirect weakly-coherent illumination, which is highlighted in insets (c): this
area is illuminated indirectly by light diffused by the rough body of the small scarab. The close proximity of the small scarab and its body’s rough surface
mean that this light is very weakly-coherent (note the size of the diffused highlight on the rough body and invoke the VCZ theorem), an effect correctly
captured by our method but not RLT: observe the erroneous diffraction patterns that appear. Both methods admit similar rendering times with identical
sample count. High-resolution renderings are available in our supplemental material.
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not reset to 0 and the effective propagation distance is accumulated
with the propagation before scattering.

Other materials can only be rendered via forward path tracing:
The coated scarab wings are rendered with Eq. (18) and the diffrac-
tion grating of the bottom layer of the DVDs using Eq. (20) (materials
(c) and (f) in Fig. 1, respectively). The PSD of the diffraction grat-
ing lobes induced by the (unrecorded, for simplicity) disk pits is
formulated in similar manner to Sun et al. [2000]. The coherence
of the incident radiation gives rise to diminished visibility of the
secondary diffraction lobes both on the right DVD disk in Fig. 1,
and especially so on the left disk, as predicted by Eq. (20). Just as
with the rough surfaces, for both the diffraction grating and the
coated wings, the scattering region is assumed to be circular with
constant ensemble-averaged reflectivity (this is most accurate at
normal incidence, and only affects the scattered shape matrix and
thus only the subsequent interactions).

For simplicity, the rendering of these figures was done using the
0th-order HG mode only.

Results. Fig. 1 was rendered using 90 000 samples and uniformly
distributed 32 spectral samples (rendering time of ∼ 3 days on a
modern desktop computer). The renderings in Fig. 7 was rendered
using 10 000 samples (about 4 hours of rendering time), though
residual noise is still visible.
We also compare our physical light transport approach with a

non coherence-aware renderer in Fig. 8. Radiometric transport may
reproduce the effects of spatial coherence by sampling many points
on the (primary or secondary) source—each acting as a coherent
plane wave constituent of the wave ensemble. However, very many
such samples are needed to accurately reflect the statistics of the
wave ensemble. This becomes especially difficult when diffused
secondary sources (e.g, reflection from a rough surface) illuminate
diffractive materials. Both methods admit similar rendering time
with an identical sample count, as the cost is dominated by the path-
tracing, but our method doesn’t suffer from wave-ensemble aliasing
and produces more accurate results with lower sample counts.
The appearance of the materials in Figs. 1 and 7 is dominated

by direct illumination from the sources, and for our spherical and
cylindrical sources the sourced CSD is well approximated by a single
HG mode (see Fig. 4). Therefore, to compare the difference between
rendering with a single mode and 16 modes, we render a small scene
that exhibits a greater degree of indirect illumination, see Fig. 9.
The rendering time of the 16 HG modes image in Fig. 9 is about 7
hours with 16 384 samples, just over double the rendering time of
the single HG mode image, indicating that evaluation of HG modes
is not the primary cost. The visual differences between the two
images are minor and are concentrated about the diffraction grating
lobes and the surfaces that reflect this grating—to be expected with
such a simple scene.
Unfortunately, present integrators are ill-suited for such light

transport and rendering more complex scenes with strong indirect
illumination is difficult with current tools: This is due to the fact
that convergence is very slow when we are limited to forward-only
path tracing. Nevertheless, the conclusions from this paper (see
next section) pave way for the development of better path tracing
approaches for physical light transport and interaction with matter.

16 HG modes1 HG mode Δ𝐸∗00

1 3 5 7

Fig. 9. A simple scene rendered using (left) the 0th-th order HG mode only
and (middle) 16 HG modes. The lighting conditions are a mixture of direct
and indirect illumination. (right) A difference image in Δ𝐸∗

00 (CIE DE2000)
colour-difference space. The “just noticeable difference” is considered to
be Δ𝐸∗

00 = 1. Ignoring the path tracing noise, the differences between the
rendered images is very minor. The small errors appear mostly on the DVD’s
diffraction lobes and on the surfaces that face the DVD, as expected: the
diffraction grating is the most coherence-sensitive material in this scene.

6 CONCLUSION
The primary result of this paper, Theorem 5.1, provides a complete
formulation of light-matter interaction, in Hermite-Gauss space,
with partially-coherent light of arbitrary spectral content. A com-
pelling theoretical observation is that it is the stationary autocor-
relation, together with the coherence of the incident light, that
guides the interference process of the scattered radiation; while the
ensemble-averaged scattering behaviour of the matter—a form of
the classical BSDF—fully quantifies the diffraction process, and thus
the shape of the scattered radiation. The fact that the diffraction pro-
cess only depends on properties of the matter can be formulated as
a stronger form of the Van Cittert–Zernike (VCZ) theorem for scat-
tering with locally-stationary matter: The Fourier transform of the
ensemble-averaged scattering intensity distribution on the scattering
medium is the coherence function of the scattered radiation.

These conclusions have important practical consequences: Under
physical optics path tracing is difficult. As noted, this is due to the
fact that interference, and thus the angular distribution of scattered
energy, depends on the coherence properties of the incident radi-
ation. Nevertheless, the conclusions above imply that we are not
limited to light tracing, but indeed we may forward path trace from
any point on a surface or medium. Because each such scattering
region acts as a secondary source. That is, if we start at a point on a
surface, we have full information of the scattered beam (up to its
spectral intensity), despite the fact that the coherence of an incident
radiation can be arbitrary. Hereafter, all the information required
to trace a path, to a sensor or other matter, is available. This is a
significant step forward from Steinberg and Yan [2021] and lays the
foundations for new practical bidirectional path tracing approaches
for physical light transport.

We would also like to challenge the popular notion that for some
scatter and diffraction formulations, like scattering by random sur-
faces and thin-film interference, the coherence properties of light
can be ignored. It is usually assumed that the diffracting matter
features of such materials are small with respect to the spatial co-
herence of light. However, as implied in Figs. 7 and 8, even with tiny
features coherence may play a role. This should not be surprising:
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there is no theoretical lower bound for the spatial coherence of light.
Sub-wavelength spatial coherence can be produced by large sources
or diffuse scatterers, and has been measured in practice [Morrill
et al. 2016]. Hence, it should be remembered that the characteris-
tic length of the coherence area of partially-coherent light spans
orders-of-magnitude: from a fraction of a wavelength to hundreds of
micrometres, and may play a more active role in the reproduction of
material appearance than currently believed in computer graphics.

Polarization. We have neglected polarization in our discussion
and treated all fields as scalar fields. Dealing with vector fields
is straightforward: in our supplemental material (Section S4) we
introduce the generalized Stokes parameters and show how to extend
our theory to a fully-vectorized formalism.

Accuracy and limitations. The accuracy of our results is up to the
same assumptions that led to Theorem 3.1: the Fraunhofer diffrac-
tion region and the Born first-order approximation. The rest of the
derivations are mathematically exact. We made analytic progress
chiefly by describing the physics under restricted, reasonable ana-
lytic models (HG basis and locally-stationary matter).

The main weakness of the presented work is the reliance on the
Born first-order approximation. This implies that multiple interac-
tions of light with the matter, like multiple inter-reflections in a
layered material, are not accounted for. The Born first-order approx-
imation is necessary to make progress and that weakness is inherent
to all such formulations of scattering and asymptotic physical optics.
Repeated interactions of the scattered radiation with the scattering
matter render any Fresnel or Fraunhofer assumptions null and void,
making this a difficult problem.
On the other hand, the Fraunhofer assumption is typically a

very decent approximation for partially-coherent light [Charnotskii
2019]. Note that some optical effects, such as lens aberrations, are
at times referred to as “near-field” effects. This terminology differs
from theoretical disciplines, where “far field” is the region where
the Fraunhofer approximation is valid. Therefore, despite the lim-
itations of Born first-order approximations, repeated interactions
at different locations in the matter—far with respect to the spatial
coherence of light—can be carried out accurately as each interaction
is independent from the other (e.g., path tracing in a participating
medium that produces many individual scattering events).

It is interesting that despite the very different optical and mathe-
matical approaches taken by us compared with the Harvey-Shack
surface scatter theory [Krywonos 2006], we arrive at similar results
for the case of scatter by statistical surfaces, viz. Eq. (15), though
our theory is able to quantify the impact of optical coherence.

Practical count of HG modes. In practice, the primary source of
error would be the truncation of the expansion under the Hermite-
Gauss basis. There are firm reasons to believe that no great number
of modes are required: the precise oscillations of the coherence
function on the transverse plane are less important than the total
coherence area and its first-order geometric properties (rotation
and scale), and the latter parameters are well captured by the shape
matrix𝚯. It is also suggested that some practical CSD functions may
be represented with a reasonable degree of accuracy using rather
few modes, see Fig. 4.

As a matter of fact, even with a single HG mode we are still
able to represent a non-trivial family of coherence functions (see
Fig. 4), propagate that coherence information throughout the scene
and quantify interaction with matter in a computationally-tractable
manner—the very problems we set out to solve in this paper. Further-
more, that 0th-order term is a simple Gaussian, thus the expressions
in Theorem 5.1.(i) reduce to rather simple expressions. This might
be advantageous to lower-accuracy applications, e.g., real-time ren-
dering, and especially so if closed-form expressions can be found
(or approximated) for ˜𝑓𝜎 , 𝑅𝜎𝜎 for some classes of matter.

Nevertheless, most coherence functions would not be approxi-
mated well by a single HG mode. The impact of this greatly depends
on the application and used frequencies: For example, the accuracy
of simulations performed with lower-frequency non-optical radi-
ation (e.g., radar) depend more on accurate representation of the
CSD than rendering with optical frequencies. The fact that small
inaccuracies arise in a very simple scene, rendered with optical
frequencies (Fig. 9), suggests that a single mode is not sufficient for
optically-accurate simulations of physical light transport. We leave
further investigation for future work.
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