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The purpose of this manuscript is to provide a complete set of derivations of
our formulae as well as an extensive background. We start with an overview
of relevant topics in mathematical analysis (Section 2) and stochastic pro-
cesses (Section 3), with the discussion serving as a brief review of the re-
quired background. We proceed with presenting the necessary theoretical
foundations of modern electrodynamics and optical coherence theory in a
comprehensive fashion, with full derivations of most relevant results and
theorems. Finally, in Section 7, the preceding discussions converge and we
start presenting our primary results.

Background
1 PRELIMINARIES

1.1 Notation
In this subsection we fix the notation that will be used throughout
the manuscript.

1.1.1 Complex numbers. We denote the complex space asC and
the imaginary unit as 𝑖 . Given a complex number 𝑧 = 𝑎 + 𝑖𝑏 ∈ C,
with 𝑎, 𝑏 ∈ R real numbers, we define the real part and imaginary
part operators as:

Re 𝑧 = 𝑎 Im 𝑧 = 𝑏 (1.1)

Then, absolute value of a complex number is

|𝑧 | =
√︃

Re{𝑧}2 + Im{𝑧}2 =
√︁
𝑎2 + 𝑏2 (1.2)

Any complex number can be written in polar form using the well-
known Euler’s formula:

𝑧 = 𝑟𝑒𝑖𝜃 = 𝑟 (cos𝜃 + 𝑖 sin𝜃 ) (1.3)

where 𝑟 = |𝑧 | and 𝜃 = arg (𝑧) ∈ (−𝜋, 𝜋] is known as the argument
of 𝑧 and is uniquely defined by 𝑧. The ★ superscript denotes the
complex conjugate:

𝑧★ = 𝑎 − 𝑖𝑏 (1.4)

The complex conjugate is distributive over complex addition and
multiplication, and clearly 𝑧𝑧★ = |𝑧 |2 =

��𝑧★��2.
1.1.2 Vectors. We denote vectors and vector-valued functions with
an arrow diacritic, ®k, though in some cases simply as a boldface
symbol f (). A hat diacritic over a vector denotes the unit vector, i.e.
k̂ = ®k/|®k| . Then, the cartesian three dimensional basis is {x̂, ŷ, ẑ}
and any vector ®v ∈ C3 can be written as

®v = 𝑣𝑥 x̂ + 𝑣𝑦 ŷ + 𝑣𝑧 ẑ (1.5)
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where the shorthand 𝑣𝑒 = ê · ®v is used to express a component of ®v
is some arbitrary basis. The gradient, divergence, curl and Laplacian
operators, in cartesian coordinates, are then, respectively:

∇ = x̂
𝜕

𝜕𝑥
+ ŷ

𝜕

𝜕𝑦
+ ẑ

𝜕

𝜕𝑧
(1.6)

∇ · ®v =
𝜕𝑣𝑥
𝜕𝑥

+ 𝜕𝑣𝑦

𝜕𝑦
+ 𝜕𝑣𝑧
𝜕𝑧

(1.7)

∇ × ®v = x̂
(
𝜕𝑣𝑧
𝜕𝑦

− 𝜕𝑣𝑦

𝜕𝑧

)
+ ŷ

(
𝜕𝑣𝑥
𝜕𝑧

− 𝜕𝑣𝑧
𝜕𝑥

)
+ ẑ

(
𝜕𝑣𝑦

𝜕𝑥
− 𝜕𝑣𝑥
𝜕𝑦

)
(1.8)

∇2®v =
𝜕2𝑣𝑥
𝜕𝑥2 + 𝜕2𝑣𝑦

𝜕𝑦2 + 𝜕2𝑣𝑧
𝜕𝑧2 (1.9)

A few useful vector identities are the triple product identities and
some vector calculus identities that we encounter later on:

®a ×
(
®b × ®c

)
= ®b(®a · ®c) − ®c

(
®a · ®b

)
(1.10)

®a ·
(
®b × ®c

)
= ®b · (®c × ®a) = ®c ·

(
®a × ®b

)
(1.11)

∇ · (∇ × ®v) = 0 (1.12)
∇ × (∇𝑓 ) = 0 (1.13)

1.1.3 Functions. LetF andF′ be fields (e.g.R orC). We say that a
function 𝑓 : F→ F′ is absolutely integrable, or 𝑓 is an 𝐿1-function,
if the following holds: ∫

F

d𝑥 |𝑓 (𝑥) | < ∞ (1.14)

that is, the integral converges. Similarly, we say that 𝑓 is square
integrable, or 𝑓 is an 𝐿2-function, if the following holds:∫

F

d𝑥 |𝑓 (𝑥) |2 < ∞ (1.15)

Any complex-valued function 𝑓 : F → C, can be decomposed
into two real-valued functions:

𝑓 (𝑤) = 𝜙r (𝑤) + 𝑖𝜙i (𝑤) (1.16)

such that 𝜙r = Re{𝑓 } : F → R and 𝜙i = Im{𝑓 } : F → R. A
complex-valued function 𝑓 (𝑤) is then said to be Hermitian when
Re 𝑓 is an even function and Im 𝑓 is an odd function, that is the
following holds

𝑓 (𝑤)★ = 𝑓 (−𝑤) (1.17)

E.g., 𝑒𝑖𝜃 as a function of 𝜃 is Hermitian, hence (𝑒𝑖𝜃 )★ = 𝑒−𝑖𝜃 .
Given an operatorℒ, we say that𝜓 is an eigenfunction ofℒ, if

when acting upon𝜓 the operatorℒ serves to only scale𝜓 , that is if
the following holds:

ℒ𝜓 = 𝜆𝜓 (1.18)

in which case 𝜆 is the eigenvalue associated with the eigenfunction
𝜓 . For example, as d2/d𝑥2 cos𝑥 = − cos𝑥 , we say that the function
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cos𝑥 is the eigenfunction of the 2nd-order derivative operator d2

d𝑥2 ,
with −1 being the associated eigenvalue.

A useful inequality is Schwarz’s integral inequality: For any 𝑓 , 𝑔
𝐿2-functions ����∫

R

𝑓 𝑔

���� ≤ (∫
R

|𝑓 |2
) 1

2
(∫
R

|𝑔|2
) 1

2
(1.19)

which is the functional analogue of the triangle inequality.

1.1.4 Kronecker and Dirac delta. We denote the Kronecker delta as

𝛿𝑖 𝑗 ≜

{
1 𝑖 = 𝑗

0 𝑖 ≠ 𝑗
(1.20)

e.g., for any orthonormal basis {ê1, ê2, . . .} it holds that ê𝑖 · ê𝑗 = 𝛿𝑖 𝑗 .
The (one-dimensional) Dirac delta 𝛿 (𝑥) is an important generalized
function that is defined as an impulse response:

∀𝑥 ≠ 0 → 𝛿 (𝑥) = 0 but
∫ 𝐿

−𝐿
d𝑥 𝛿 (𝑥) = 1 (1.21)

where 𝐿 is any real positive value and can be extended to infinity.
Of course, strictly speaking those definitions are contradictory: Any
function that vanishes almost everywhere, up to a set of zero mea-
sure, will integrate (if it is integrable) to 0, both in the Lebesgue and
Riemann sense. From a strictly mathematical perspective, the Dirac
delta is usually defined as a limit of a convergent sequence of func-
tions. However, such subtleties belong to the realm of distribution
theory, and for our purposes is sufficient to say that the Dirac delta
is a generalized function such that it diverges at 0, and admits the
“filtering” property:

𝑓 (𝑥) =
∫ ∞

−∞
d𝑥 ′ 𝑓 (𝑥 ′)𝛿 (𝑥 ′ − 𝑥) (1.22)

We also trivially generalize the Dirac delta to higher dimensions.
For example, the three dimensional Dirac delta in cartesian coordi-
nates is denoted as

𝛿3 (®r) = 𝛿 (𝑟𝑥 )𝛿 (𝑟𝑦)𝛿 (𝑟𝑧) (1.23)

The Dirac delta is typically considered to have units of inverse
length.

1.1.5 Matrices. Our notation for matrices is quite standard. The
vector space F𝑛×𝑚 denotes the space of 𝑛 ×𝑚 matrices over the
field F. We denote the identity matrix as 𝑰 , with the dimensions
implied by context. A common source of ambiguity is the conjugate
transpose operation, which we denote by the dagger, viz. 𝑨†.

1.1.6 Phasors and wavelets. A phasor, 𝑎𝑒𝑖𝜙 , is a complex number
representing a disturbance with a given amplitude and phase. 𝑎
is the peak amplitude of the phasor, and 𝜙 is the phase. A one-
dimensional monochromatic plane-wave can be represented as a
simple real wavelet that describes the space and time dependent
wave disturbance:

𝑤 (𝑡) = 𝑎 cos
(

2𝜋
𝜆
𝑥 − 𝜔𝑡 + 𝜑0

)
(1.24)

with 𝜔 being the angular frequency, 𝜆 the spatial wavelength and
𝜑0 a static phase-shift. It is often more convenient to deal with the

wavelet in phasor form:

𝑢 (𝑡) = 𝑎𝑒𝑖 ( 2𝜋
𝜆 𝑥−𝜔𝑡+𝜑0) (1.25)

and clearly Re{𝑢} = 𝑤 . 𝑢 is called the analytic representation of the
real wave disturbance𝑤 .

1.1.7 Additional definitions. The convolution between two func-
tions f and g is defined as follows:

(𝑓 ∗ 𝑔) (𝑡) ≜
∫ ∞

−∞
d𝑡 ′ 𝑓 (𝑡 − 𝑡 ′)𝑔(𝑡 ′) (1.26)

Commonly used in optics are rectangular and circular aperture
functions:

rect (𝑥) =


1 |𝑥 | < 1
2

1
2 |𝑥 | = 1

2
0 |𝑥 | > 1

2

circ (𝑟 ) =
{

1 𝑟 ≤ 1
0 otherwise

(1.27)

2 FUNCTIONAL ANALYSIS

2.1 Fourier Analysis
Fourier analysis is a crucial tool across a broad range of scientific
and engineering applications, in particular in the analysis of time-
harmonic fields and their statistics, which is at the centre of our
discussion. The Fourier transform is a form of an integral transform,
where a function is mapped from its original domain to another
domain, or put equivalently: From one representation to another.
The Fourier transform decomposes a function, or signal, into the
frequencies that build up the original function. There are multiple
conflicting definitions of the Fourier transform, with different disci-
plines favouring different normalization constants and units. To be
consistent with the notation of a wavelet, viz. 𝑒𝑖 (®r·®k−𝜔𝑡 ) , we assume
units of time 𝑡 and angular frequency 𝜔 for the 1-dimensional trans-
form pairs and use Fourier kernels with a positive sign, 𝑒𝑖𝜔𝑡 . For
higher dimensions (spatial transforms) we use kernels with a nega-
tive sign, 𝑒−𝑖®r·®k, where we typically denote ®r, ®k as spatial units and
spatial frequency, respectively. The definition of (temporal) Fourier
transform pairs is then:

𝑓 (𝜔) = ℱ
{
𝑓
}
≜

∫ ∞

−∞
d𝑡 𝑓 (𝑡)𝑒𝑖𝜔𝑡 (2.1)

𝑓 (𝑡) = ℱ-1
{
𝑓
}
≜

1
2𝜋

∫ ∞

−∞
d𝜔 𝑓 (𝜔)𝑒−𝑖𝜔𝑡 (2.2)

This definition is only valid when the integrals converge and a suffi-
cient conditions is that 𝑓 and its Fourier transform are 𝐿1-functions
(absolutely integrable) onR. The Fourier transform pair will gen-
erally be denoted with a wedge diacritic. The Fourier transform
results (in general) in a complex-valued function that describes the
magnitude and phase-shift of each frequency that is present in the
original function. Regarding terminology: We say that the original
function 𝑓 (𝑡) is in the time-domain, while its transform pair 𝑓 (𝜔)
is in the Fourier-domain or frequency-domain, used interchangeably.
At times, when the integral in Eq. (2.1) does not converge but 𝑓

is an 𝐿2-function (square integrable, i.e. has finite average power), it
is nonetheless possible to define a generalized Fourier transform as

𝑓 (𝜔) = ℱ
{
𝑓
}
≜ lim

𝑅→∞

∫ 𝑅

−𝑅
d𝑡 𝑓 (𝑡)𝑒𝑖𝜔𝑡 (2.3)
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and similarly forℱ-1 . A generalized Fourier transform for func-
tions neither in 𝐿1 not 𝐿2 can also exist when the integral exists in
terms of generalized functions. In those cases we say 𝑓 is Fourier
transformable in the generalized sense.

For (spatial) 𝑛-dimensional functions the definitions are extended
in a natural manner, expect we conjugate the kernels:

𝑓
(
®k
)
= ℱ

{
𝑓
}
≜

∫
R𝑛

d𝑛®r 𝑓 (®r)𝑒−𝑖®k·®r (2.4)

𝑓 (®r) = ℱ-1
{
𝑓
}
≜

1
(2𝜋)𝑛

∫
R𝑛

d𝑛®k 𝑓
(
®k
)
𝑒𝑖
®k·®r (2.5)

and for 𝐿2-functions:

𝑓
(
®k
)
= ℱ

{
𝑓
}
≜ lim

𝑅→∞

∫
𝐵𝑅

d𝑛®r 𝑓 (®r)𝑒−𝑖®k·®r (2.6)

where 𝐵𝑅 = {®v ∈ R𝑛 : |®v| < 𝑅} is a ball centred at the origin and
the limit is taken in the 𝐿2-norm.

2.1.1 Real functions. Let 𝑓 be a real-valued signal and 𝑓 its Fourier
transform. Clearlyℱ-1 {𝑓 }★ = ℱ-1 {𝑓 }, hence

ℱ-1
{
𝑓
}★

=
1

2𝜋

∫ ∞

−∞
d𝜔 𝑓 (𝜔)★𝑒𝑖𝜔𝑡

=
1

2𝜋

∫ ∞

−∞
d𝜔 𝑓 (−𝜔)𝑒𝑖𝜔𝑡 = ℱ-1

{
𝑓
}

(2.7)

and we deduce that 𝑓 (𝜔)★ = 𝑓 (−𝜔), i.e. 𝑓 is Hermitian. As the
Fourier kernels 𝑒−𝑖𝜔𝑡 are also Hermitian, it follows that 𝑓 (𝜔)𝑒−𝑖𝜔𝑡
is Hermitian aswell. Thus, the real and imaginary parts of 𝑓 (𝜔)𝑒−𝑖𝜔𝑡
are even and odd, respectively, and when integrating the odd part
vanishes. Therefore,

𝑓 (𝑡) = ℱ-1
{
𝑓
}
=

1
𝜋

Re
∫ ∞

0
d𝜔 𝑓 (𝜔)𝑒−𝑖𝜔𝑡 (2.8)

The above half-space formulation of the inverse Fourier transform
suggests that given a real signal, only the non-negative frequen-
cies of the transform pair are needed to recover the signal and the
negative frequencies contain no additional information.

2.1.2 Theorems. We list here additional important results and the-
orems in Fourier analysis. Derivations can be found in introductory
textbooks on Fourier analysis. We assume Fourier transformable
functions 𝑓 and 𝑔 throughout.

Theorem 2.1 (Parseval’s Theorem).∫ ∞

−∞
d𝑡 𝑓 (𝑡)𝑔(𝑡)★ =

∫ ∞

−∞
d𝜔 𝑓 (𝜔)𝑔(𝜔)★ (2.9)

From Parseval’s theorem we immediately conclude that
∫
|𝑓 | 2 =∫

|𝑓 | 2, which physically can be interpreted as the claim that the total
energy in a signal is invariant under the Fourier transform. A useful
way to transform convolutions into multiplications is provided by
the following theorem.

Theorem 2.2 (Convolution Theorem).

ℱ{𝑓 ∗ 𝑔} = ℱ{𝑓 }ℱ{𝑔} (2.10)
ℱ{𝑓 𝑔} = ℱ{𝑓 } ∗ℱ{𝑔} (2.11)

that is, a convolution in the time-domain is equivalent to multi-
plication in the frequency-domain, and vice versa. A direct conse-
quence of the convolution theorem is the cross-correlation theorem,
which makes contact with statistical analysis by associating the
cross-correlation of 𝑓 and 𝑔 to their Fourier transforms. The cross-
correlation is defined as:

Corr{𝑓 , 𝑔}(𝑡) ≜
∫ ∞

−∞
d𝜏 𝑓 (𝑡 + 𝜏)𝑔(𝜏)★ (2.12)

Theorem 2.3 (Cross-Correlation Theorem).

Corr{𝑓 , 𝑔}(𝑡) = ℱ-1{ℱ{𝑓 }ℱ{𝑔}★}
(2.13)

Proof. Using the convolution theorem:

Corr{𝑓 , 𝑔}(𝑡) =
∫ ∞

−∞
d𝜏 𝑓 (𝑡 + 𝜏)𝑔(𝜏)★ = 𝑓 (𝑡) ∗ 𝑔(−𝑡)★

= ℱ-1{ℱ{𝑓 }ℱ{𝑔}★}
(2.14)

as desired. □

2.1.3 Fourier transforms of important functions. A few useful (tem-
poral) Fourier transform identities are listed here. Given 𝑎 ∈ R,
transform pairs of elementary functions are:

ℱ{𝛿 (𝑡 − 𝑎)} = 𝑒𝑖𝑎 (2.15)

ℱ
{
𝑒𝑖𝑎𝑡

}
= 2𝜋𝛿 (𝑎 + 𝜔) (2.16)

ℱ{sin(𝑎𝑡)} = 𝑖𝜋 [𝛿 (𝜔 − 𝑎) − 𝛿 (𝜔 + 𝑎)] (2.17)
ℱ{cos(𝑎𝑡)} = 𝜋 [𝛿 (𝜔 − 𝑎) + 𝛿 (𝜔 + 𝑎)] (2.18)

ℱ
{
𝑒−(𝑎𝑡 )

2 }
=

√
𝜋

|𝑎 | 𝑒
−𝜔2
4𝑎2 (2.19)

Transform pairs of simple aperture functions:

ℱ{rect(𝑡)} = sinc
(𝜔

2

)
(2.20)

ℱ{circ ( |®r|)} = 2𝜋
|®k|

J1
(
|®k|

)
(2.21)

where J1 is the Bessel function of first kind. The transform of the
circular aperture is known as the Airy disk and is generalized to
higher dimensions in Appendix A.1. See Appendix A for additional
identities involving the Fourier transform of apertures of different
geometries.

2.2 Mercer’s Theorem
The Mercer’s theorem is a functional analysis tool, that decomposes
a positive semi-definite Hilbert-Schmidt kernel into a sum of orthog-
onal components. It can be considered as the functional analogue of
the principal component analysis in machine learning. We present
it without proof, instead the reader is referred to Jorgens [1982]. We
start with a few definitions.

Definition 2.4. Let Ω ⊂ R𝑛 be a closed set (𝑛 ≥ 1). A function
𝒦 : Ω × Ω → C is called a Hilbert–Schmidt kernel if the following
conditions are satisfied:

(1) 𝒦 is 𝐿2 in the domain Ω × Ω∫
Ω

∫
Ω

d𝑥 d𝑦 |𝒦(𝑥,𝑦) |2 < ∞

(2) 𝒦 is self-adjoint, i.e. 𝒦(𝑥,𝑦) = 𝒦(𝑦, 𝑥)★
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Remark: Ω can be relaxed to be any compact Hausdorff space.

Definition 2.5 (Hilbert–Schmidt Integral Operator). Given a kernel
𝒦 and its domain Ω, then the associated Hilbert–Schmidt integral
operator 𝑇𝒦 acts upon a function 𝑓 as follows:

𝑇𝒦 𝑓 ≜

∫
Ω

d𝑦𝒦(𝑥,𝑦) 𝑓 (𝑦)

Definition 2.6 (Mercer’s Condition). A kernel 𝒦 : Ω × Ω → C is
positive semi-definite if for any 𝐿2-function 𝑓∫

Ω

∫
Ω

d𝑥 d𝑦𝒦(𝑥,𝑦) 𝑓 (𝑥) 𝑓 (𝑦)★ ≥ 0

Theorem 2.7 (Mercer’s Theorem). Assume a continuous positive
semi-definite Hilbert–Schmidt kernel𝒦 (that fulfils Mercer’s condi-
tion) on domain Ω. Then, there exists a countable set of orthonormal
eigenfunctions, {𝜙 𝑗 }∞𝑗=1, and non-negative eigenvalues, {𝜆 𝑗 }∞𝑗=1, of
the associated Hilbert–Schmidt integral operator 𝑇𝒦 , viz.

(1) 𝑇𝒦𝜙 𝑗 = 𝜆 𝑗𝜙 𝑗
(2)

∫
Ω d𝑥 𝜙𝑛 (𝑥)𝜙𝑚 (𝑥) = 𝛿𝑛𝑚

and𝒦 can be decomposed as follows:

𝒦(𝑥,𝑦) =
∞∑︁
𝑗=1

𝜆 𝑗𝜙 𝑗 (𝑥)𝜙 𝑗 (𝑦)★

where the convergence is absolute and uniform on Ω × Ω.

2.3 Method of Green Functions
The method of Green functions is a highly useful method for solving
linear partial differential equations. Consider a linear differential
operatorℒ and an inhomogeneous partial differential equation of
time and space:

ℒ Ψ(®r, 𝑡) = −𝑓 (®r, 𝑡) (2.22)

where 𝑓 is a known source function and we would like to solve for
Ψ(®r, 𝑡). To that end, we introduce 𝐺 , the Green function associated
with the operatorℒ, defined as the elementary impulse

ℒ 𝐺
(®r, ®r′; 𝑡, 𝑡 ′) = −𝛿3 (®r − ®r′)𝛿 (𝑡 − 𝑡 ′) (2.23)

If we were to find an analytic form for𝐺 , then the solution Ψ to the
inhomogeneous partial differential equation immediately becomes

Ψ(®r, 𝑡) = −
∫ ∞

−∞
d𝑡 ′

∫
R3

d3®r′𝐺 (®r, ®r′; 𝑡, 𝑡 ′) 𝑓 (®r′, 𝑡 ′) (2.24)

which is readily verifiable by applying ℒ to both sides. That is,
using the Green function the solution Ψ is expressed as a sum of
point influences over different spatial and temporal points weighted
by 𝑓 . Note that a Green function is associated with a specific linear
differential operator, and might not be unique. When ℒ is transla-
tion invariant,𝐺 can be written as𝐺 (®r−®r′; 𝑡 − 𝑡 ′), and the solution
becomes a four-dimensional space and time convolution, viz.

Ψ(®r, 𝑡) = −
⨌

d𝑡 ′ d3®r′𝐺 (®r − ®r′; 𝑡 − 𝑡 ′) 𝑓 (®r′, 𝑡 ′) = −𝐺 ∗ 𝑓 (2.25)

2.3.1 Retarded Green function. The wave operator, ∇2 − 1
𝑐2

𝜕2

𝜕𝑡2 ,
is an important linear differential operator that will be employed
extensively later on when we discuss electromagnetic waves. The
Green function for the wave operator admits the following analytic
form (see Zangwill [2013] for derivations)

𝐺±
(®r, ®r′; 𝑡, 𝑡 ′) = 𝛿

(
𝑡 − 𝑡 ′ ± 1

𝑐 |®r − ®r′ |
)

4𝜋 |®r − ®r′ | (2.26)

which are known as the advanced (𝐺+) and retarded (𝐺−) Green
functions. Physically, it is the retarded function that is more com-
pelling as the advanced function “looks forward in time” to compute
a solution. We assume the following natural boundary conditions:
Ψ → 0 as ®r → ∞ or 𝑡 < 0. Then, we choose the Green function
corresponding to the wave operator with the listed boundary con-
ditions to be the retarded function and write it as 𝐺− (®r − ®r′; 𝑡 − 𝑡 ′).
The solution becomes

Ψ(®r, 𝑡) = −
∫ ∞

−∞
d𝑡 ′

∫
R3

d3®r′𝐺 (®r − ®r′; 𝑡 − 𝑡 ′) 𝑓 (®r′, 𝑡 ′)
=

1
4𝜋

∫
R3

d3®r′
𝑓
(
®r′, 𝑡 − 1

𝑐 |®r − ®r′ |
)

|®r − ®r′ | (2.27)

2.3.2 Free-space Green function. The Fourier domain counterpart
of the wave operator is the Helmholtz operator, ∇2 +𝑘2. We call the
associated Green function the free-space Green function and denote
it𝐺0. To obtain a unique solution we impose the boundary condition
known as the Sommerfeld radiation condition, viz.

lim
𝑟→∞ 𝑟

(
𝜕

𝜕𝑟
− 𝑖𝑘

)
𝐺0 = 0 (2.28)

where the derivative is in spherical coordinates. The Sommerfeld
radiation condition implies that a point impulse solution must be-
have like an outgoing propagating spherical wave. Noting that
the Helmholtz operator is also translation invariant, the free-space
Green function can be shown to be [Zangwill 2013]

𝐺0
(®r − ®r′) = 1

4𝜋 |®r − ®r′ | 𝑒
𝑖𝑘 |®r−®r′ | (2.29)

3 STOCHASTIC PROCESSES
Random variables naturally generalize to random (or stochastic)
processes, where the uncertain values—the possible outcomes from
an experiment—are functions instead of numbers. Consider a phys-
ical process that undergoes random fluctuations. For example, a
gas-discharge lamp contains a large collection of excited atoms
which randomly drop to a lower energy state and in the process
emit light energy in the form of a photon. Such spontaneous emis-
sion is a stochastic process where photons with distinct energies
have different probabilities—possibly varying over time—of being
emitted (and those probabilities define the emission spectrum). Curi-
ous readers are encouraged to refer to more comprehensive sources:
Miller [2012] for an introductory textbook on random processes,
and Goodman [2015] for a statistical optics perspective.

We now formally define a stochastic process: Let Ω be a (finite or
infinite) sample space with an accompanying probability measure.
Then, a stochastic process𝑈 (𝑡) is defined as an ensemble of sample
functions, called realizations, and can be written as 𝑈 = { 𝑢𝜁 (𝑡)}

, Vol. 1, No. 1, Article . Publication date: April 2021.



Generic Framework for Physical Light Transport - Derivations • 5

with 𝜁 ∈ Ω. Note that a stochastic process implies the existence
of the underlying state space and measure, however for simplicity
we omit this dependence from the notation. Each realization 𝑢𝜁 (𝑡)
can be thought of as a possible outcome of a singular experiment
that measures the stochastic process (e.g., the observed photons
and their energy emitted over time), and is typically a function of
time. Generalization to spatial functions (or other ordered index
sets) is straightforward though of little use for our discussion. Being
time-dependent processes, it is natural to define the time-averaging
operator : 〈

𝑢𝜁
〉
t
≜ lim

𝑇→∞
1

2𝑇

∫ 𝑇

−𝑇
d𝑡 𝑢𝜁 (𝑡) (3.1)

as well as the time cross-correlation function:

Γ̃𝜁 𝜉 (𝜏) ≜
〈
𝑢 (𝑡 + 𝜏)𝜁 𝑢 (𝑡)★𝜉

〉
t

= lim
𝑇→∞

1
2𝑇

∫ 𝑇

−𝑇
d𝑡 𝑢 (𝑡 + 𝜏)𝜁 𝑢 (𝑡)★𝜉 (3.2)

which describes the statistical similarity of a realization compared
with a time-shifted realization. The spacial case of Γ̃𝜁𝜁 is called the
time autocorrelation function. We assume the limits above exist for
any realization of a well-behaved physical process.
At times it is practical to characterize the stochastic process via

its joint distributions: Let 𝑝𝑈 ( 𝑢𝜁1 , . . . , 𝑢𝜁𝑛 ; 𝑡1, . . . , 𝑡𝑛) be the joint
probability density function of𝑛 ≥ 1 realizations taken at fixed times
𝑡1, . . . , 𝑡𝑛 . Then, the ensemble average of a stochastic process can be
considered as the expected outcome of the process at some instant,
and is defined as the average over the constituent realizations:

⟨𝑈 (𝑡)⟩ ≜
∫
Ω

d𝑢 𝑢𝑝𝑈 (𝑢; 𝑡) (3.3)

Of import is the second-order joint moment of a couple of stochastic
processes𝑈 and𝑉 , i.e. the statistical cross-correlation function, whose
definition follows

Γ𝑈𝑉 (𝑡1, 𝑡2) ≜
〈
𝑈 (𝑡1)𝑉 (𝑡2)★

〉
=

∬
d𝑢 d𝑣 𝑢𝑣★𝑝𝑈𝑉 (𝑢, 𝑣 ; 𝑡1, 𝑡2) (3.4)

In similar fashion to the time-based case, we denote the statistical
autocorrelation function as Γ𝑈𝑈 . We choose not to consider higher-
order moments.

3.0.1 Ergodicity and stationarity. A stochastic process whose char-
acteristics do not change over time is said to be a steady-state pro-
cess, or stationary. More formally, a stochastic process is stationary
to order 𝑛 if the joint probability density of order up to 𝑛 is invariant
under time translation. A process is wide-sense stationary provided
⟨𝑈 (𝑡)⟩ is independent of 𝑡 (and without loss of generality can be
assumed to 0) and the autocorrelation function is only a function
of the time difference, i.e. Γ𝑈𝑈 (𝑡1, 𝑡2) = Γ𝑈𝑈 (𝜏) with 𝜏 = 𝑡2 − 𝑡1
(clearly, stationarity to order 2 is a sufficient condition for wide-
sense stationarity). We assume that all processes that are relevant
to our discussion are stationary, at least in the wide sense.
A more restrictive class of stochastic processes is ergodic pro-

cesses, where any realization in the ensemble of such a process fully

describes the entire stochastic process. If the following holds

⟨𝑈 ⟩ =
〈
𝑢𝜁
〉
t

(3.5)

Γ𝑈𝑈 (𝑡1, 𝑡2) = Γ𝑈𝑈 (𝜏) = Γ̃𝜁𝜁 (𝜏) (3.6)

for all realizations then𝑈 is an ergodic stochastic process, and we
refer to Γ𝑈𝑈 as simply the autocorrelation function of the process.
We immediately observe that an ergodic process must be stationary.
Most stochastic processes of interest are ergodic and, unless stated
otherwise, we will implicitly assume so.
As an example consider again our gas discharge lamp. The life-

time of such a lamp is typically far greater than the characteristic
time of emission, hence we can consider the process to be stationary:
If we were to perform a couple of experiments, each starting at a
different time point and each measuring an emission realizations,
we’d expect the produced sample functions to be statistically similar.
Put differently, the probability of some photon energy being emit-
ted remains constant over time. This process is also ergodic: Each
realization will measure the lamp’s entire spectrum of emission.

3.0.2 Spectral analysis. Each realization 𝑢 (𝑡) of a stochastic pro-
cess 𝑈 is a function of time, thus we are encouraged to study the
spectral decomposition ℱ{𝑢}. Unfortunately, for many physical
processes the realizations are not Fourier transformable, not even in
the generalized sense (Eq. (2.3)). This holds in general for stationary
processes as well, where by definition energy is distributed over all
time. However, the ensemble averaged decomposition does typically
exist. We assume that 𝑈 is stationary, at least in the wide sense,
and define the truncated, normalized Fourier transform-like of a
realization to be

𝑢𝑇 (𝜔) =
1√
2𝑇

∫ 𝑇

−𝑇
d𝑡 𝑢 (𝑡)𝑒𝑖𝜔𝑡 (3.7)

By Parseval’s theorem (Theorem 2.1), the total energy is preserved
in transform pairs, therefore |𝑢𝑇 |2 being normalized describes the
power in each spectral component of the truncated signal. At the
limit, we define the power spectral density (PSD) of the process𝑈 :

𝑆𝑈𝑈 (𝜔) ≜ lim
𝑇→∞

〈 |𝑢𝑇 (𝜔) |2〉 (3.8)

which has units of power per unit frequency. We now ready to
present the celebratedWiener–Khinchin theorem:

Theorem 3.1 (Wiener–Khinchin Theorem). The spectral de-
composition of the autocorrelation function of a stationary process is
its power spectral density.

Proof. With the definition of the PSD (Eq. (3.8)) as the starting
point, note that integration and ensemble averaging commute and
by using the properties of a stationary process we deduce:

𝑆𝑈𝑈 (𝜔) = lim
𝑇→∞

1
2𝑇

∫ 𝑇

−𝑇
d𝑡

∫ 𝑇

−𝑇
d𝑡 ′

〈
𝑢 (𝑡)𝑢 (

𝑡 ′
)★〉

𝑒𝑖𝜔 (𝑡−𝑡 ′)

= lim
𝑇→∞

1
2𝑇

∫ 𝑇

−𝑇
d𝑡

∫ 𝑇−𝑡

−𝑇−𝑡
d𝜏 Γ𝑈𝑈 (𝜏)𝑒𝑖𝜔𝜏

= lim
𝑇→∞

∫ 𝑇

−𝑇
d𝜏 Γ𝑈𝑈 (𝜏)𝑒𝑖𝜔𝜏 = ℱ{Γ𝑈𝑈 } (3.9)

where we performed the variable substitution 𝜏 = 𝑡 ′ − 𝑡 . □
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This is a surprising result: The PSD and the autocorrelation func-
tion are intrinsically linked as Fourier transform pairs for any sta-
tionary stochastic process! The Wiener–Khinchin theorem can be
regarded as a special case of the cross-correlation theorem (Theo-
rem 2.3), however it applies under a much more general setting. The
definition above is trivially extended to become cross power spectral
density of a couple of stochastic processes𝑈 and 𝑉 :

𝑆𝑈𝑉 (𝜔) ≜ lim
𝑇→∞

〈
𝑢𝑇 (𝜔)𝑣𝑇 (𝜔)★

〉
= ℱ{Γ𝑈𝑉 } (3.10)

which is an important quantity in the theory of optical coherence.
For ergodic processes, the statistical cross- and autocorrelation func-
tions can be interchanged with their time-based counterparts.

It can be shown that even when the limit in Eq. (3.8) does not con-
verge, a spectral decomposition still exists in form of some power
spectrum distribution. Furthermore, the theorem can also be gen-
eralized to a wider class of stochastic processes. We won’t prove
either of those claims, however, as the above formulation is suffi-
cient for our use. The Wiener–Khinchin theorem will be implicitly
used throughout this manuscript. When we consider a spectral de-
composition of the autocorrelation we assume its existence is given
by the Wiener–Khinchin theorem.

4 ELECTROMAGNETIC WAVES IN VACUUM
Light energy is propagated by electromagnetic waves. The intrinsic
quantities that give rise to those waves are the electric, ®E, and mag-
netic, ®B, fields whose behaviour is governed by Maxwell’s famous
set of equations. Those equations are the fundamental principles
that describe the interaction of those fields with charge and cur-
rent, as well as the time-dependent interaction between the fields
themselves. It is that interaction between the electric and magnetic
fields that results in self-supporting fields that oscillate in unison
and give rise to time-harmonic electromagnetic waves. We provide
a very brief discussion about the relevant classical electrodynamics
and we elect to use the Gaussian-cgs units in this write-up. The
justification to that choice of a units-system is that while the SI
units are more popular and familiar, Gaussians units are simpler and
make fundamental physical properties and insights clearer—e.g.,
the pesky SI constants 𝜖0 and 𝜇0 are artefacts of SI units and not
physical properties of free-space.
We start with the general Maxwell equations:

∇ · ®E = 4𝜋𝜌 ∇ · ®B = 0 (4.1)

∇ × ®E = −1
𝑐

𝜕®B
𝜕𝑡

∇ × ®B =
4𝜋
𝑐
®j + 1

𝑐

𝜕®E
𝜕𝑡

(4.2)

where 𝜌,®j are the charge and current distributions, respectively, and
𝑐 is the speed of light. Directly from the two curl equations we note
that

∇ × ∇ × ®E = −1
𝑐

𝜕

𝜕𝑡

(
∇ × ®B

)
= − 1

𝑐2
𝜕2®E
𝜕𝑡2

− 4𝜋
𝑐2

𝜕®j
𝜕𝑡

(4.3)

and by using the vector triple product identity (1.10), we deduce that
the electric and magnetic fields satisfy the inhomogeneous wave

equations: [
∇2 − 1

𝑐2
𝜕2

𝜕𝑡2

]
®E = 4𝜋

(
1
𝑐

𝜕®j
𝜕𝑡

+ ∇𝜌

)
(4.4)[

∇2 − 1
𝑐2

𝜕2

𝜕𝑡2

]
®B = −4𝜋

𝑐
∇ × ®j (4.5)

The operator on the left-hand side in Eqs. (4.4) and (4.5) is known as
the d’Alembert operator, or the wave operator, and we denote it via

△m = ∇2 − 1
𝑐2

𝜕2

𝜕𝑡2
(4.6)

Away from sources, that is where no charge or current is present
(𝜌 ≡ 0 and ®j ≡ 0), the wave equations for the electric and magnetic
fields reduce to their homogeneous counterparts:

△m ®E = 0 △m ®B = 0 (4.7)

While Eqs. (4.4) and (4.5) govern the sourcing of electromagnetic
waves, the homogeneous partial differential equations above gov-
ern the propagation of those waves. Sourcing of high-frequency
electromagnetic waves is better explained quantum mechanically
and not classically, making the general sourcing Maxwell equations
of little use for us in computer rendering. The propagation of elec-
tromagnetic waves in space and matter, on the other hand, is the
foundation of light transport and the homogeneous wave equations
above are the driving principle.

4.0.1 Transverse electromagnetic waves. An important class of solu-
tions to the free-space wave Equations (4.7) are transverse electro-
magnetic waves (TEM). This simple kind of waves are commonly
used in practical applications (like computer rendering), provide
some physical insight and are useful to study propagation in matter
and polarization, which will be discussed later.

TEM waves are waves where the electric and magnetic fields are
perpendicular to the direction of propagation. Let ®k be the wave’s
direction of propagation, i.e. the wavevector, and without loss of
generality we set ®k = 𝑘 ẑ, with 𝑘 = |®k| being the wavenumber.
The spatial frequency is then 2𝜋𝑘 and the wavelength is related
to the wavenumber via 𝜆 = 2𝜋

𝑘 . Then, we are looking for fields
®E(𝑧, 𝑡), ®B(𝑧, 𝑡) that satisfy the homogeneous wave equations as well
as Maxwell’s source-free equations. From Eqs. (4.1) and (4.2) we
immediately deduce that

𝜕𝐸𝑧
𝜕𝑧

= 0 𝜕𝐸𝑧
𝜕𝑡

= 𝑐 ẑ · ∇ × ®B = 𝑐

(
𝜕𝐵𝑦

𝜕𝑥
− 𝜕𝐵𝑥

𝜕𝑦

)
= 0 (4.8)

and similarly for 𝐵𝑧 , which implies that 𝐸𝑧 , 𝐵𝑧 are constants and we
set them to 0. The general solution is known as d’Alembert formula
and is a superposition of two plane-waves propagating in opposite
directions, f⊥ (𝑧 − 𝑐𝑡) and g⊥ (𝑧 + 𝑐𝑡) such that f⊥ · ẑ = g⊥ · ẑ = 0:

®E = f⊥ (𝑧 − 𝑐𝑡) + g⊥ (𝑧 + 𝑐𝑡) (4.9)

Further, using Eq. (4.2) we write

𝜕®B
𝜕𝑡

= −𝑐∇ × ®E = −𝑐 ẑ × 𝜕

𝜕𝑧
(𝑓⊥ (𝑧 − 𝑐𝑡) + g⊥ (𝑧 + 𝑐𝑡))

= ẑ ×
𝜕

𝜕𝑡
(𝑓⊥ (𝑧 − 𝑐𝑡) − g⊥ (𝑧 + 𝑐𝑡)) (4.10)
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And thus
®B = ẑ × f⊥ (𝑧 − 𝑐𝑡) − ẑ × g⊥ (𝑧 + 𝑐𝑡) (4.11)

up to a constant which we can neglect. Noting again that ®k ∥ ẑ we
deduce that indeed ®E · ®k = ®B · ®k = 0, and hence Eqs. (4.9) and (4.11)
describe a TEM wave. However, observe that it does not hold in
general that ®E · ®B = 0 (such waves always admit some standing wave
characteristic).

The most simple form of a TEMwave is the monochromatic plane-
wave. Those kind of waves have very simple geometric properties,
which is why they are ubiquitously used in computer rendering.
Let f⊥ ≡ 0, then the solution to the homogeneous wave equations
becomes:

®E(®r, 𝑡) = E⊥𝑒𝑖 (
®k·®r−𝜔𝑡 ) (4.12)

®B(®r, 𝑡) = −(k̂ × E⊥)𝑒𝑖 (®k·®r−𝜔𝑡 ) (4.13)

with 𝜔 = 𝑐 |®k| = 𝑐𝑘 being the angular frequency. The quantity E⊥
is generally a complex-valued (temporally and spatially-invariant)
vector that describes the direction of the electric field ®E in space,
i.e. its polarization, and we discuss polarization later. Note that
(under Gaussian units!) a physical characteristic of plane-waves,
i.e. |®E| = | ®B| , is obvious. The complex fields ®E and ®B above are the
analytic signal representation of the wave, and it is the real parts
that describe the (“physical”) time-varying electric and magnetic
disturbances. Indeed, the energy density of any electromagnetic
wave is:

𝑢EM =
1

8𝜋

[(
Re ®E

)2
+

(
Re ®B

)2
]

(4.14)

that is, the complex parts of ®E and ®B contribute no energy. The
complex representation is used solely for convenient and ease of
computation. As plane-waves extend to infinity in the transverse di-
rection (perpendicular to ®k), they are clearly aphysical! Nonetheless,
plane-waves are a good local approximation to real waves in a con-
fined region of time and space, and they admit useful properties that
make them easy to use and reason about: Note that for plane-waves
it always holds that ®E · ®B = 0 hence the vectors {®k, ®E, ®B} give rise to
an orthogonal triad, with ®B being uniquely defined by the former
two vectors. This means we do not need to concern ourselves with
the ®B field. The Poynting vector—the energy current density and
direction of the electromagnetic flux—is defined as

®S =
𝑐

4𝜋

(
®E × ®B

)
(4.15)

for any electromagnetic wave. In the case of plane-waves, ®S is clearly
aligned with ®k and the time-averaged energy density and Poynting
vector are easily calculated:

⟨𝑢EM⟩t =
1

8𝜋 |E⊥ |2 (4.16)〈
®S
〉
t
= ⟨𝑢EM⟩t 𝑐k̂ (4.17)

As our sensors of interest (e.g., eye, camera) observe electromagnetic
radiation over a period long compared to the angular frequency 𝜔 ,
it is the time-averaged quantities that are of more significance to us
than the instantaneous values. The observed intensity of the wave

source

detectormirror

mirror

splitter𝑑1

𝑑2

Fig. 1. Michelson interferometer: Light is emitted by a source and is then
split into two beams. Each beam travels until it is reflected by a mirror,
then the beams are recombined and are observed by the detector. The
distance difference between the travelled beams, 𝑑 = 𝑑2 −𝑑1, is controllable
by moving the mirrors. This distance difference induces a time-delay of
𝜏 = 𝑑

𝑐 between the beams which enables us to measure the light’s ability
to interfere with a time-delayed version of itself, i.e. its temporal coherence.

is then simply the magnitude of the (real part of) time-averaged
Poynting vector:

𝐼 (®r) =
���Re

〈
®S(®r)

〉
t

��� (4.18)

5 OPTICAL COHERENCE THEORY
So far we have been concerned with deterministic fields, waves
and wave packets. Real-life radiation from physical sources, on
the other hand, can not be adequately explained classically and is
fundamentally a quantummechanics process. Thermal light sources,
gas discharge lamps, light-emitting diodes (LEDs) all emit light by
the spontaneous emission of a photon when an excited particle
transitions to a lower energy state. Even stimulated emission, such
as laser radiation, contains some randomness due to contributions
from spontaneous emission as well as uncontrollable environment
factors, e.g., temperature and mechanical vibrations. Furthermore,
fields at visible spectra oscillate too rapidly for the oscillations to be
directly measured, therefore it is only the time-averaged quantities
that are observed. This calls for a statistical treatment of those wave
packets. The optical coherence theory, which can be considered as
the study of observable optical quantities, has been pioneered by
Emil Wolf, who also remained a dominant figure and contributor
to the field. This section loosely follows Wolf [2007]. Additional
resources are Born and Wolf [1999]; Goodman [2015]; Mandel and
Wolf [1995].

5.0.1 Temporal coherence. To simplify the discussion we start by
ignoring polarization. Polarization does play an important role in
optical coherence and will be revisited later in Section 6. Let 𝑢 (®r, 𝑡)
be a scalar wave packet. Consider an experiment involving the
Michelson interferometer (Fig. 1), a device where light is split into
two paths, then recombined inducing a time-delay between the
recombined beams. The recombined beam is then observed by a
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detector. The distance difference between the paths is denoted as
𝑑 resulting in a 𝜏 = 𝑑

𝑐 time-delay between the recombined beams.
The amplitude of the field at the observation point at some time 𝑡 ,
denoted𝑤 (𝜏), is then the superposition of the recombined beams:

𝑤 (𝜏) = 𝛼1𝑢 (𝑡) + 𝛼2𝑢 (𝑡 + 𝜏) (5.1)

where 𝛼1,2 are real constants that describe the field strength that
remains in each beam after interacting with the Michelson interfer-
ometer. If the splitting and recombining machinery introduces no
phase-shifts then we can assume that 𝛼1,2 are real values. Further,
if we assume that the energy lost in the process is negligible, then
𝛼1

1 + 𝛼2
2 = 1. As mentioned, the fluctuations of the field 𝑢 are not

directly observable, we therefore treat 𝑢 as a wave ensemble—a (sta-
tionary, in the wide sense, and ergodic) stochastic process. Denote
𝑢1 = 𝑢 (𝑡), 𝑢2 = 𝑢 (𝑡 + 𝜏), then the observed intensity of 𝑤 by the
detector is the time-averaged quantity (up to a constant):

𝐼 (𝑤 (𝜏)) = 〈
𝑤 (𝜏)𝑤 (𝜏)★〉

t
= 𝛼2

1
〈
𝑢1𝑢

★
1
〉
t + 𝛼2

2
〈
𝑢2𝑢

★
2
〉
t + 2 Re

{
𝛼1𝛼2

〈
𝑢1𝑢

★
2
〉
t
}

= 𝐼 (𝑢) + 2𝛼1𝛼2 Re Γ̃𝑢𝑢 (𝜏) (5.2)

where we assumed that 𝐼 (𝑢 (𝑡)) = 𝐼 (𝑢 (𝑡 + 𝜏)), that is energy-loss
due to propagation inside the device is negligible. If we were to
further assume that 𝛼2 = 𝛼2

1 = 𝛼2
2 = 1/√2, meaning that the energy

is split evenly between the beams, then 𝐼 (𝑤 (𝜏)) = 𝐼 (𝑢) + Re Γ̃𝑢𝑢 (𝜏).
Γ̃𝑢𝑢 is the time autocorrelation function of the analytic signal 𝑢. In
the context of optical coherence theory it is known as the tempo-
ral coherence function, simply denoted Γ(𝜏) henceforth, and is an
important quantity of second-order coherence. We define

𝛾𝑢𝑢 (𝜏) ≜ Γ𝑢𝑢 (𝜏)
Γ𝑢𝑢 (0) (5.3)

Notice that |𝛾𝑢𝑢 | ≤ 1, and we can rewrite Eq. (5.2) in the form of
the temporal interference law for stationary fields:

𝐼 (𝑢1 + 𝑢2) = 𝐼 (𝑢1) + 𝐼 (𝑢2) + 2
√︁
𝐼 (𝑢1)

√︁
𝐼 (𝑢2) Re𝛾𝑢𝑢 (𝜏) (5.4)

for any stationary 𝑢 and any 𝜏 , the time-delay between 𝑢1 and 𝑢2.
When 𝐼 (𝑤) = 0 total destructive interference has occurred, while
when 𝐼 (𝑤) = 2𝐼 (𝑢) total constructive interference has occurred. The
significance of the Michelson interferometer is its ability to measure
the temporal coherence of the observed light: By slowly changing
the distance difference between the paths, and thus the time-delay
𝜏 , we measure the ability of the light beam to interfere with a time-
delayed version of itself. This physical property is quantified by the
degree of temporal coherence 𝛾𝑢𝑢 .

5.0.2 Spatial coherence. Our discussion of temporal coherence im-
plicitly assumed that the beams enter the Michelson interferometer
at a singular point, giving rise to a clearly aphysical perfect point
light source. We now dispense with that assumption and consider
the spatial extent of the light source. Consider Young’s famous dou-
ble slit experiment (Fig. 2) where light passes through two thin slits
situated in close proximity to each other and then is observed on a
screen (we ignore and do not formalise some practical requirements
that are needed to perform the experiment, such as the size of the
slits and distance from the source). Assume the following geometry:
An opaque screen, with two slits notched in it at points ®r1, ®r2, and

source 𝑑

®r1

®r2

®p

ẑ

Fig. 2. Young’s double slit experiment: Light is incident upon an opaque
screen (center) with two thin slits notched in it. The slits are positioned
at points ®r1 and ®r2. The light diffracts through the slits and produces an
interference pattern that is observed on a screen (right). The intensity of the
interference pattern at an observation point ®p depends both on the temporal
coherence properties of the light, due to time difference between the light
arriving from ®r1 and ®r2; as well as the spatial coherence properties that
come into effect due to distance between the slits 𝑑 = |®r1 − ®r2 | .

a screen with an observation point ®p. Both screens are parallel to
the 𝑥𝑦-axis. A light source is placed such that the screen contain-
ing the slits is between the source and the observation screen, and
the centre of the light source, the middle point between the slits
and ®p all lie on the 𝑧-axis. Denote the distance between the slits
𝑑 = |®r1 − ®r2 | . As before, let 𝑢 be the amplitude of the emitted light
and the amplitude at the point of interest ®p can be written as the
superposition

𝑢 (®p, 𝑡) = 𝐾1𝑢

(
®r1, 𝑡 −

|®p − ®r1 |
𝑐

)
+ 𝐾2𝑢

(
®r2, 𝑡 −

|®p − ®r2 |
𝑐

)
(5.5)

(up to a constant), with 𝐾1,2 are some (complex-valued) constants
that arise due to the diffraction. We are interested in the observed
(time-averaged) intensity 𝐼 (®p). Then, denoting 𝑡 ′ = 𝑡 − |®p − ®r1 | /𝑐
and 𝑡 ′′ = 𝑡 − |®p − ®r2 | /𝑐 we get

𝐼 (𝑢 (®p, 𝑡)) =|𝐾1 |2𝐼
(
𝑢
(®r1, 𝑡

′) ) + |𝐾2 |2𝐼
(
𝑢
(®r2, 𝑡

′′) )
+ 2 Re

{
𝐾1𝐾

★
2

〈
𝑢
(®r1, 𝑡

′)𝑢 (®r2, 𝑡
′′)★〉

t

}
(5.6)

Denote 𝜏 = 𝑡 ′′ − 𝑡 ′ as the time difference, and the generalization of
the temporal coherence function, known as the mutual coherence
function for stationary processes, immediately follows

Γ𝑢𝑢 (®r1, ®r2, 𝜏) ≜
〈
𝑢 (®r1, 𝑡)𝑢 (®r2, 𝑡 + 𝜏)★

〉
t (5.7)

A basic property of the mutual coherence function that is of interest
is the relation of its complex conjugate to itself: Γ𝑢𝑢 (®r1, ®r2, 𝜏)★ =
Γ𝑢𝑢 (®r2, ®r1,−𝜏), which is readily verifiable by using the stationarity
of 𝑢.

In an identical fashion to the temporal degree of coherence, we can
also define the degree of coherence as the normalized autocorrelation:

𝛾𝑢𝑢 (®r1, ®r2, 𝜏) ≜ Γ𝑢𝑢 (®r1, ®r2, 𝜏)√︁
Γ𝑢𝑢 (®r1, ®r1, 0)

√︁
Γ𝑢𝑢 (®r2, ®r2, 0)

(5.8)
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and it is trivially verifiable that |𝛾 | ≤ 1 (by Schwarz’s inequality,
Eq. (1.19)). Using the degree of coherence we can rewrite Eq. (5.6)
as the interference law for stationary fields

𝐼 (𝑢 (®r1, 𝑡) + 𝑢 (®r2, 𝑡 + 𝜏)) = 𝐼 (𝑢 (®r1, 𝑡)) + 𝐼 (𝑢 (®r2, 𝑡))
+ 2

√︁
𝐼 (𝑢 (®r1, 𝑡))

√︁
𝐼 (𝑢 (®r2, 𝑡)) Re𝛾𝑢𝑢 (®r1, ®r2, 𝜏) (5.9)

The mutual coherence function is the fundamental quantity on the
theory of optical coherence. As with the temporal coherence func-
tion, we drop the subscripts and denote it Γ(®r1, ®r2, 𝜏). Furthermore,
when 𝜏 ≡ 0, i.e. we ignore temporal contributions, we slightly abuse
notation to write Γ(®r1, ®r2) ≜ Γ(®r1, ®r2, 0)—the “equal-time” mutual
coherence, that is sometimes also known as the mutual intensity.
To understand how the spatial extent of the light source plays

an effect on the observed intensity, we model the light source as
a collection of a great many independent elementary radiators, an
accurate model for spontaneous emission sources. Let 𝑢 (®r, 𝑡)𝑗 be a
singular wavelet emitted by a radiator. The wave ensemble is then a
collection of all such emitted wavelets. Then, we can formulate the
amplitude that diffracts through the slits and is measured at the ob-
servation point as the ensemble average ⟨𝑢 (®p, 𝑡)⟩. The instantaneous
intensity is then:

𝐼 (𝑢 (®p, 𝑡)) = 〈
𝑢 (®p, 𝑡)𝑢 (®p, 𝑡)★〉

(5.10)

Somewhat informally, we can note that when the light source is
small, the distance difference between the elementary radiators
that give rise to the contributing phasors is small as well, and thus
most of the arriving wavelets will be in-phase and interfere. With
a greater source, the contributing phasors will be out-of-phase,
until the distribution of the phases is uniform and no interference
takes place anymore (more accurately, constructive and destructive
interference takes place with equal probability). For ergodic process,
the time and ensemble averages are equal.
From a physical perspective, it makes little difference how we

formulate the sample functions of the stochastic process. In the
example above we formulated the wavelet emitted from each ele-
mentary radiator as a sample function. Alternative we can consider
a sample function as a realization of an experiment measuring the
amplitude. Some formulations are easier to reason about or serve a
pedagogical purpose, however from a purely physical standpoint
they are equivalent. This justifies the decision to drop the subscripts
from the coherence functions, but it is important to remember that
an underlying stochastic process is implied nonetheless.

5.1 Coherence in the Spectral Domain
The space-time formulation of the mutual coherence presented in
the previous subsection is useful when the light is monochromatic,
or satisfies some monochromaticity conditions. When studying the
interaction of light and (dispersive) matter, it is more natural to
study each frequency component independently in-place of the
time-dependant field. To that end, given a polychromatic wave
ensemble, the (by now) firmly recognizable game plan is to consider
the Fourier transform of the mutual coherence function. In addition
to rendering some of the mathematics more tractable, an apparent
advantage is that by treating each spectral component individually,
the coherence time is effectively infinite and we can ignore temporal

effects. We will show formally that it is indeed the case and discuss
caveats.
First, we formally present the space-frequency formulation of

coherence: In Section 3 we discussed the power spectral density
of a stationary process and its relation to the autocorrelation. This
relation is described by theWiener–Khinchin theorem (Theorem 3.1)
which states that the transform pair of the autocorrelation function
is the cross power spectral density, known as the cross-spectral
density under the context of optical coherence theory. Viz.

W (®r1, ®r2, 𝜔) ≜ℱ{Γ(®r1, ®r2, 𝑡)} (5.11)

Just as the mutual coherence Γ is the central quantity in the space-
time formulation of coherence, the cross-spectral density W is the
central quantity in the space-frequency formulation of coherence.
To show that different spectral components are uncorrelated, at
least for ergodic processes, consider a truncated Fourier transform
of the signal (an unnormalized version of Eq. (3.7)):

𝑢𝑇 (®r, 𝜔) =
∫ 𝑇

−𝑇
d𝑡 𝑢 (®r, 𝑡)𝑒𝑖𝜔𝑡 (5.12)

Then, consider the following ensemble average:

lim
𝑇→∞

〈
𝑢𝑇 (®r, 𝜔)𝑢𝑇

(®r′, 𝜔 ′)★〉
= lim
𝑇→∞

∫ 𝑇

−𝑇
d𝑡 𝑒𝑖 (𝜔−𝜔′)𝑡

×
∫ 𝑇+𝑡

−𝑇+𝑡
d𝜏

〈
𝑢 (®r, 𝑡)𝑢 (®r′, 𝑡 + 𝜏 )★〉

𝑒−𝑖𝜔
′𝜏 (5.13)

Due to stationarity the integrand of the second integral is inde-
pendent of 𝑡 . Then, at the limit the second integral is the (inverse)
Fourier transform of Γ(®r, ®r′, 𝜏), i.e. the cross-spectral density, while
the first integral is calculated trivially using the Fourier identity
(2.16), resulting in the expression

lim
𝑇→∞

〈
𝑢𝑇 (®r, 𝜔)𝑢𝑇

(®r′, 𝜔 ′)★〉
= 2𝜋𝛿

(
𝜔 − 𝜔 ′) W (®r, ®r′,−𝜔 ′) (5.14)

As expected, for stationary process, which are not Fourier trans-
formable, the limit does not strictly exist for 𝜔 = 𝜔 ′. However,
whenever 𝜔 ≠ 𝜔 ′ the Dirac delta vanishes, the limit exists and the
ensemble average is 0, indicating that the spectral components of
distinct frequencies are uncorrelated.

In similar fashion to the mutual coherence function, it is at times
more convenient to work with the normalized version of the cross-
spectral density, which known as the spectral degree of coherence:

𝓌(®r1, ®r2, 𝜔) ≜ W (®r1, ®r2, 𝜔)√︁
W (®r1, ®r1, 𝜔)

√︁
W (®r2, ®r2, 𝜔)

(5.15)

The observed intensity of a wave ensemble at a given point is sim-
ply its self coherence, i.e. 𝐼 = Γ(®r, ®r). Note that the same information
is contained in the cross-spectral density if we were to integrate
over the relevant frequencies:

Γ(®r, ®r, 0) = ℱ-1{W (®r, ®r, 𝜔)}
����
𝑡=0

=
1
𝜋

∫ ∞

0
d𝜔W (®r, ®r, 𝜔) (5.16)

Integrating over the non-negative frequencies only is sufficient as
we pertain to real underlying signals. It makes sense then to call the
integrand W (®r, ®r, 𝜔) the spectral density.
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5.1.1 Coherent-modes representation of the spectrum. An important
result presented by Wolf [1982] is the decomposition of the cross-
spectral density. Let 𝐷 ⊂ R3 be a closed set, large enough to be the
spatial domain of interest. Note that for any 𝜔 the following holds

W (®r1, ®r2, 𝜔) = W (®r2, ®r1, 𝜔)★ (5.17)∫
𝐷

∫
𝐷

d®r d®r′
��W (®r, ®r′, 𝜔 ) ��2 < ∞ (5.18)

where the integral inequality holds because the cross-spectral den-
sity is point-wise finite (for a physical process) and 𝐷 is a finite
domain. The above are the conditions of the Hilbert–Schmidt kernel
(Definition 2.4), thereforeW with domain𝐷×𝐷 is a kernel function.
It is also a positive semi-definite kernel (See Wolf [1982] for a proof),
therefore Mercer’s condition is satisfied as well. Then, by Mercer’s
theorem (Theorem 2.7), there exists a decomposition:

W (®r1, ®r2, 𝜔) =
∞∑︁
𝑛=1

𝛼𝑛 (𝜔)𝜙𝑛 (®r1)𝜙𝑛 (®r2)★ (5.19)

where 𝛼𝑛 ≥ 0 are eigenvalues and 𝜙𝑛 are eigenfunctions of the
integral operator 𝑇W (Definition 2.5). The set of eigenfunctions
form an orthonormal basis, viz.

∫
𝐷 𝜙𝑛𝜙𝑚 = 𝛿𝑛𝑚 , and is a count-

able set at most. Such decomposition is called the coherent-modes
decomposition, whereW (𝑛) (®r1, ®r2, 𝜔) = 𝛼𝑛 (𝜔)𝜙𝑛 (®r1)𝜙𝑛 (®r2)★ are
the coherent-modes. Notice now that by taking the inverse Fourier
transform of each side in Eq. (5.11), we get:

Γ(®r1, ®r2, 𝑡) = ℱ-1{W} =
∑︁
𝑛

ℱ-1{𝛼𝑛 (𝜔)𝜙𝑛 (®r1)𝜙𝑛 (®r2)★
}

(5.20)

and we write Γ (𝑛) = ℱ-1
{
W (𝑛)

}
, the space-time coherent-modes.

A theoretical result immediately follows:

Corollary 5.1. A wave ensemble is spatially coherent everywhere
in a domain 𝐷 if and only if the coherent-mode decomposition of its
cross-spectral density in 𝐷 consists of a single mode.

Proof. Consider a wave ensemble where the coherent-modes
decomposition can be written as a single mode, i.e. W ≡ W (1) .
Then, it is trivially verifiable that in the entire domain 𝐷 it holds
|𝓌| ≡ 1. The other direction follows from |𝓌| ≡ 1 and some
algebra. □

That is, we have a derived a sufficient and necessary condition
for the formation of a fully spatially coherent field.

Using the above decompositionwe can also construct an ensemble
of space-frequency realizations faithful to the original signal, despite
the fact that a spectral decomposition in the sense of a Fourier
transform does not generally exist for a realization of a stationary
process. To demonstrate that, consider the ensemble of elementary
monochromatic wavelets {𝑣 (®r, 𝜔)𝑒−𝑖𝜔𝑡 }, such that

𝑣 (®r, 𝜔) =
∞∑︁
𝑛=1

𝑎𝑛 (𝜔)𝜙𝑛 (®r) (5.21)

where the coefficients 𝑎𝑛 (𝜔) are some frequency-dependent random
variables that fulfil:

E
[
𝑎𝑛 (𝜔)𝑎𝑚 (𝜔)★]

= 𝛿𝑛𝑚𝛼𝑛 (𝜔) and
∑︁
𝑛

|𝑎𝑛 (𝜔) | < ∞ (5.22)

We define now the space-frequency ensemble average over a fre-
quency as〈
𝑣 (®r1, 𝜔)𝑣 (®r2, 𝜔)★

〉
𝜔 ≜

∞∑︁
𝑛=1

∞∑︁
𝑚=1

E
[
𝑎𝑛 (𝜔)𝑎𝑚 (𝜔)★]

𝜙𝑛 (®r1)𝜙𝑚 (®r2)★

= W (®r1, ®r2, 𝜔) (5.23)

indicating that the space-frequency ensemble average over the en-
semble of monochromatic realizations, as defined, indeed repro-
duces the cross-spectral density. In addition, using Eq. (5.16) we
immediately observe that the observed intensity at a point becomes:

𝜋𝐼 (®r) =
∫ ∞

0
d𝜔

〈
𝑣 (®r, 𝜔)𝑣 (®r, 𝜔)★〉

𝜔 =
∫ ∞

0
d𝜔W (®r, ®r, 𝜔) (5.24)

Hence, thewave ensemble {𝑣 (®r, 𝜔)𝑒−𝑖𝜔𝑡 } is a faithful decomposition
into monochromatic wavelets.
The spectral interference law for stationary wave ensembles can

now be formulated: Suppose {𝑣 (®r, 𝜔)𝑒−𝑖𝜔𝑡 } is a decomposition of
some space-time signal into elementary monochromatic wavelets.
Recall Young’s double slit experiment. We assume that light arrives
at an observation point ®p from a couple of thin slits, ®r1 and ®r2, and
we would like to compute the spectral density of 𝑣 (®p, 𝜔). It takes
light 𝑟1,2 = |®r1,2 − ®p| time to travel from each slit, respectively, to the
observation point, therefore the light (of frequency 𝜔) that arrives
at ®p can be formulated as the superposition

𝑣 (®p, 𝜔)𝑒−𝑖𝜔𝑡 = 𝑣 (®q1, 𝜔)𝑒−𝑖𝜔
𝑟1
𝑐 𝑒−𝑖𝜔𝑡 + 𝑣 (®q2, 𝜔)𝑒−𝑖𝜔

𝑟2
𝑐 𝑒−𝑖𝜔𝑡 (5.25)

Denoting 𝓈 = W(®p, ®p, 𝜔) and 𝓈′1,2 = W(®r1,2, ®r1,2, 𝜔), the spectral
density at the observation point is then

𝓈 = 𝓈′1 + 𝓈′2 + 2
√︃
𝓈′1

√︃
𝓈′2 Re

[
𝓌(®r1, ®r2, 𝜔)𝑒−𝑖𝜔

𝑟1−𝑟2
𝑐

]
(5.26)

which is the spectral interference law. While the interference law
(Eq. (5.9)) describes the intensity of a superposition of waves of
any state of coherence, the spectral interference law describes the
spectral density of the superposition of monochromatic wavelets of
any state of coherence.

5.1.2 Separability of temporal and spatial coherence. So far we have
shown that under the space-frequency formulation, distinct frequen-
cies can be treated independently while ignoring temporal effects.
Clearly temporal effects do not just disappear, and we will show
now that temporal coherence gets reintroduced when taking the
intensity in the space-frequency domain. Consider the spectral in-
terference law (Eq. (5.26)), applying Eq. (5.24) we integrate both
sides to calculate the intensity:

𝐼 = 𝐼 ′1 + 𝐼 ′2 +
2
𝜋

Re
∫ ∞

0
d𝜔W (®r1, ®r2, 𝜔)𝑒−𝑖𝜔

𝑟1−𝑟2
𝑐 (5.27)

with 𝐼 = 𝐼 (®p) and 𝐼 ′1,2 = 𝐼 (®r1,2). Carrying out the integration of the
last term we recognize the inverse Fourier transform and we get

2
𝜋

Re
∫ ∞

0
d𝜔W (®r1, ®r2, 𝜔)𝑒−𝑖𝜔

𝑟1−𝑟2
𝑐 = 2 Re Γ

(
®r1, ®r2,

𝑟1 − 𝑟2
𝑐

)
(5.28)

which is identical to the interference law with the appropriate time-
delay. Hence, the temporal coherence phenomena get reintroduced
when we observe the ensemble, i.e. calculate the intensity.
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It is of theoretical importance to discuss when spatial and tem-
poral effects are orthogonal and can be separated from each other.
Write the mutual coherence function as a product of spatial coher-
ence and temporal coherence functions, viz.

Γ(®r1, ®r2, 𝜏) = Γ(®r1, ®r2)Γ̃(𝜏) (5.29)
then, by taking the Fourier transform of each side, we get

W (®r1, ®r2, 𝜔) = Γ(®r1, ®r2)ℱ
{
Γ̃(𝜏)} (5.30)

the last term,ℱ
{
Γ̃(𝜏)}, is the space-invariant power spectral den-

sity. That is, the mutual coherence function is separable into spatial
and temporal components if and only if the spectral profile of the
wave ensemble is constant over space. The interaction of light with
matter, be it propagation through matter or scattering, is typically
frequency dependent and admits a dispersive relation. Therefore, we
can conclude that for our domain of interest, spatial and temporal
coherence effects can not be separated.

5.2 The Van Cittert–Zernike Theorem
The thought experiment we have carried out earlier when consider-
ing a natural source with a positive spatial extent as a collection of
elementary radiators gives insight into how “incoherent” sources
can give rise to wave ensembles which exhibit spatial coherence
over extended regions of space. If we were to measure the ampli-
tudes of the wavelets emitted by the source at close proximity to the
source, we would find that the independent elementary radiators
give rise to highly irregular phasors with uncorrelated phases. On
the other hand, far away from the source the incoming wave-trains
would share some semblance, and indeed very far from the source
the source can approximated as a “coherent” point source. This
phenomenon frequently arises in astronomy: Despite the massive
size of radiating stars, due to the immense distance from the source,
light that is observed on earth can exhibit a significant degree of
coherence. This observation suggests that coherence is generated
by the means of propagation. In this subsection we will formalise
that statement.
Let the light source be composed of a continuous distribution

of independent radiators. Each radiator positioned at ®s gives rise
to the scalar wavelet 𝑢s (®r, 𝑡). For simplicity assume that the light
is perfectly monochromatic with angular frequency 𝜔 , therefore
we can ignore temporal coherence effects. The amplitude at point
®r is then the contributions from the entire ensemble, and can be
formulated as a spatial integral over the volume of the source:

𝑢 (®r, 𝑡) =
∫
𝑉 (𝑆)

d3®s 𝑢s (®r, 𝑡) (5.31)

We are interested in the mutual coherence of 𝑢 at any two points ®r1,
®r2, i.e. Γ(®r1, ®r2). An expression for mutual coherence function under
general conditions is given by the Van Cittert–Zernike theorem, the
central theorem of optical coherence theory:

Theorem 5.2 (Van Cittert–Zernike Theorem). Assume a light
source as described above. Given a pair of points ®r1, ®r2 the (equal-time)
mutual coherence is as follows

Γ(®r1, ®r2) =
∫
𝑉 (𝑆)

d3s
𝑒−𝑖𝜔

𝑟s−𝑟 ′s
𝑐

𝑟s𝑟 ′s
𝐼 (®s)

where for brevity we denoted 𝑟s = |®r1 − ®s| and 𝑟 ′s = |®r2 − ®s| .

Proof. The amplitude of each ensemble member can be writ-
ten as the time-delayed version of the emitted wavelet with the
appropriate phase progression:

𝑢s (®r, 𝑡) = 𝑢s
(
®s, 𝑡 − |®r − ®s|

𝑐

)
1

|®r − ®s| 𝑒
−𝑖𝜔 |®r−®s|

𝑐 (5.32)

We assume simple spherical waves and hence the amplitude decays
as the inverse of the distance from the source.We alsomake the natu-
ral assumption that the radiators are zero-meaned, i.e.

〈
𝑢s (®r, 𝑡)〉t = 0.

Then, an almost incoherent ensemble that corresponds to a propa-
gating wave can be written as [Goodman 2015]〈

𝑢s (®s, 𝑡) 𝑢q (®q, 𝑡 + 𝜏)★〉
t =

{〈
𝑢s (®s, 𝑡) 𝑢q (®q, 𝑡 + 𝜏)★〉

t , s = q〈
𝑢s (®s, 𝑡)〉t 〈 𝑢q (®q, 𝑡 + 𝜏)〉★t , s ≠ q

= 𝛿3 (®s − ®q) 〈 𝑢s (®s, 𝑡) 𝑢s (®s, 𝑡 + 𝜏)★〉
t (5.33)

up to a constant, for any ®s, ®q and 𝜏 . By using the equations above
we get the following expression for the mutual coherence:

Γ(®r1, ®r2) =
〈
𝑢 (®r1, 𝑡)𝑢 (®r2, 𝑡)★

〉
t

=
∫
𝑉 (𝑆)

d3s
∫
𝑉 (𝑆)

d3q
〈
𝑢s (®r1, 𝑡) 𝑢q (®r2, 𝑡)★

〉
t

=
∫
𝑉 (𝑆)

d3s
𝑒−𝑖𝜔

𝑟s−𝑟 ′s
𝑐

𝑟s𝑟 ′s

〈
𝑢s
(
®s, 𝑡 − 𝑟s

𝑐

)
𝑢s
(
®s, 𝑡 − 𝑟 ′s

𝑐

)★〉
t

(5.34)

As mentioned, we assume full temporal coherence, therefore 𝐼 (®s) =〈
𝑢s (®s, 𝑡) 𝑢s (®s, 𝑡 + 𝜏)〉t is the intensity of a singular radiator. Hence:

Γ(®r1, ®r2) =
∫
𝑉 (𝑆)

d3s
𝑒−𝑖𝜔

𝑟s−𝑟 ′s
𝑐

𝑟s𝑟 ′s
𝐼 (®s) (5.35)

as desired. □

Let 𝑅1, 𝑅2 be the distances from the source to ®r1, ®r2, respectively.
If we are far from the source, where 𝑅1 ≈ 𝑟s and 𝑅2 ≈ 𝑟 ′s are a reason-
able approximation for any ®s ∈ 𝑉 (𝑆), then the Van Cittert–Zernike
theorem simplifies to:

Γ(®r1, ®r2) ≈ 1
𝑅1𝑅2

∫
𝑉 (𝑆)

d3s 𝐼 (®s)𝑒−𝑖𝑘 (𝑟s−𝑟 ′s) (5.36)

where𝜔 = 𝑘𝑐 as usual. Assume that we image the light arriving from
the source, and would like to study its coherence properties. The
imaging effectively transforms the source into a two-dimensional
plane, which without loss of generality we set to coincide with
the 𝑥𝑦-plane. Our points of interest are now placed on the “image”
plane, i.e. the imaging sensor, which we assume to be co-planar to
the source and located at 𝑧 = 𝑅 ≈ 𝑅1,2. See Fig. 3 for a depiction of
the considered geometry.

Theorem 5.3 (Far-FieldVanCittert–Zernike Theorem). Given
the planar geometry described above and ®r1, ®r2 on the “image” plane,
we denote 𝐼 (𝜉, 𝜁 ) as the radiance that leaves the imaged source at
planar coordinates (𝜉, 𝜁 ) and is observed by the sensor. The implied
convention is that 𝐼 (𝜉, 𝜁 ) ≡ 0 outside the light source. Then,

Γ(®r1, ®r2) = 𝑒−𝑖𝑘𝜗 ℱ{𝐼 } (𝑘Δ𝑥 , 𝑘Δ𝑦
)
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𝑆

𝜉

𝜁

𝑅

®r1

®r2

x̂

ŷ

𝐼 (𝜉, 𝜁 )

Γ(®r1, ®r2)
ℱ

ℱ
-1

Fig. 3. A light source 𝑆 is imaged by a far-away observer. The light source
gives rise to an intensity distribution on the source plane (right), denoted
𝐼 (𝜉, 𝜁 ) , and we are interested in the mutual coherence, Γ, of the light that
is observed on the image plane (left). The Far-Field Van Cittert–Zernike
Theorem relates the two quantities as Fourier transform pairs.

where ®r1,2 =
(
𝑥1,2, 𝑦1,2

)
and we denote the shorthands: Δ𝑥 = 𝑥2−𝑥1

𝑅 ,

Δ𝑦 = 𝑦2−𝑦1
𝑅 and 𝜗 = 1

2𝑅

(
|®r1 | 2 − |®r2 | 2

)
.

Proof. Start with Eq. (5.36). Given (𝜉, 𝜁 ), coordinates on the
source plane, we adopt the following approximation:

𝑟s =
√︃
𝑅2 + (𝜉 − 𝑥1)2 + (𝜁 − 𝑦1)2 ≈ 𝑅 + (𝜉 − 𝑥1)2 + (𝜁 − 𝑦1)2

2𝑅

where we power expanded the square root and neglected the O
(

1
𝑅3

)
terms. A similar expression for 𝑟 ′s follows. Define Δ𝑥 = 𝑥2−𝑥1

𝑅 and
Δ𝑦 = 𝑦2−𝑦1

𝑅 then the distance difference becomes:

𝑟s − 𝑟 ′s =
(𝜉 − 𝑥1)2 + (𝜁 − 𝑦1)2

2𝑅 − (𝜉 − 𝑥2)2 + (𝜁 − 𝑦2)2

2𝑅
= 𝜗 + 𝜉Δ𝑥 + 𝜁Δ𝑦 (5.37)

with

𝜗 =
𝑥2

1 + 𝑦2
1 − 𝑥2

2 − 𝑦2
2

2𝑅 =
1

2𝑅

(
|®r1 | 2 − |®r2 | 2

)
(5.38)

And we conclude that the mutual coherence is:

Γ(®r1, ®r2) ≈ 𝑒−𝑖𝑘𝜗
∞∫

−∞

∞∫
−∞

d𝜉 d𝜁 𝐼 (𝜉, 𝜁 )𝑒−𝑖𝑘 (𝜉Δ𝑥+𝜁Δ𝑦)

= 𝑒−𝑖𝑘𝜗 ℱ{𝐼 } (𝑘Δ𝑥 , 𝑘Δ𝑦
)

(5.39)

The 𝑅−2 factor from Eq. (5.36) was eliminated due to 𝐼 (𝜉, 𝜁 ) having
units of radiance (flux per solid angle per area). □

The far-field Van Cittert–Zernike theorem is of great practical
import: When the source is far, compared to the size of the source
and the distance between the points of interest, it relates the mutual

coherence to the intensity distribution across the source as Fourier
transform pairs.

Before we conclude, it is worthwhile to clarify some terminology:
We sometimes refer to a light source as “incoherent” or “coherent”,
however strictly speaking only wave ensembles at particular regions
in time and space can be described as coherent or incoherent. An
“incoherent” light source, which are essentially all natural sources,
are incoherent in the sense that they are composed of uncorrelated
radiators. Nonetheless, radiation from such sources can still be
coherent. The spatial region over which a wave ensemble remains
somewhat coherent can be quantified, and we will do so next.

5.2.1 Spatial Coherence Area. Using the Van Cittert–Zernike the-
orem we can now present a well-known and practically very im-
portant lemma that readily allows us to estimate the spatial region
over which light from natural sources remains coherent.

We define the spatial coherence area as

𝐴C (®r) ≜
∞∫

−∞

∞∫
−∞

d𝑥 d𝑦 |𝛾 (𝑥,𝑦) |2 (5.40)

The degree of coherence 𝛾 (𝑥,𝑦) is the intensity normalized version
of the planar form of the mutual coherence, similar to the far-field
Van Cittert–Zernike theorem (Theorem 5.3).

Lemma 5.4. Given a monochromatic disk-shaped planar source
with radius 𝜁 and with a uniform radiant flux per unit area (i.e. con-
stant radiosity). The spatial coherence area 𝐴C satisfies the following
proportionality relation:

𝐴C (®r) ∝
𝜆2

Ω𝑆

where 𝜆 is the wavelength and Ω𝑆 is the solid angle subtended by the
source at ®r.

Proof. The intensity that reaches a point ®r is 𝐼 (®r) = 𝜋𝜁 2𝐼0𝑅−2,
with 𝑅 being the distance to the source. Away from the source the
spatial coherence area can be computed using the far-field Van
Cittert–Zernike theorem:

𝐴C (®r) =
∬

d𝑥 d𝑦
���� Γ(𝑥,𝑦)𝐼 (®r)

����2
≈

∬
d𝑥 d𝑦

������ 𝐼0𝑅−2 ∬
disk d𝜉 d𝜁 𝑒−𝑖𝑘

𝜉𝑥+𝜁 𝑦
𝑅

𝜋𝜁 2𝐼0𝑅−2

������
2

=
1

𝜋2𝜁 4

∬
d𝑥 d𝑦

�������
2𝜋𝜁 J1

(
𝑘𝜁𝑅−1√︁𝑥2 + 𝑦2

)
𝑘𝑅−1

√︁
𝑥2 + 𝑦2

�������
2

=
8𝜋𝑅2

𝑘2𝜁 2

∫ ∞

0
d𝜌 𝜌

����� J1 (𝑘𝜁𝑅−1𝜌
)

𝜌

�����2 (5.41)

wherewe used the circular aperture Fourier transform identity (2.21),
and transformed from cartesian coordinates to polar coordinates via
d𝑥 d𝑦 = d𝜃 𝜌 d𝜌 . The Bessel function of the first kind, J1 (𝑎) admits
its first zero at 𝑎0 ≈ 3.8317 [Abramowitz and Stegun 1965]. It makes
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practical sense to limit the integration till 𝑎0, and thereby we get
the expression

𝐴C (®r) ≈
8𝜋𝑅2

𝑘2𝜁 2

∫ 𝑎0

0

d𝜌 ′

𝜌 ′
��J1 (𝜌 ′) ��2

=
4𝜋𝑅2

𝑘2𝜁 2

(
1 − J0 (𝑎0)2 − J1 (𝑎0)2

)
≈ 4𝑅2𝜆2

5𝜋𝜁 2 ∝ 𝜆2

Ω𝑆
(5.42)

where we used the following Bessel integral identity [Born andWolf
1999]:

∫ 𝑎
0 𝜌−1J1 (𝜌)2 = 1

2

(
1 − J0 (𝑎)2 − J1 (𝑎)2

)
, and the approxima-

tion 1 − J0 (𝑎0)2 ≈ 4
5 . Also, 𝑘 = 2𝜋𝜆−1, as usual. □

Lemma 5.4 presents an order-of-magnitude relation: The spatial
coherence area induced by a perfectly circular light source is pro-
portional to the inverse solid angle subtended by the source. It is
also implied that longer wavelength light will generally remain
coherent over greater spatial regions compared to light with shorter
wavelengths. This approximative relation is conserved, in practice,
for sources of other shapes.

It is of interest to briefly examine the behaviour of the degree of
coherence, |𝛾 |, when 𝜌 > 𝑎0 in the integral in Eq. (5.41). For 𝑎 ≫ 1
the following asymptotic expansion of the Bessel function of the
first kind is known [Abramowitz and Stegun 1965]:

J1 (𝑎) ≈
√︂

2
𝜋𝑎

[
cos

(
𝑎 − 3𝜋

4

)
+ O

(
|𝜌 |−1

)]
(5.43)

That is, when the distance between the points of interest ®r and ®r′
is exactly 𝜌0 = 𝑅 𝜆𝑎0

2𝜋𝜁 the degree of coherence is zero, however as
the distance increases past 𝜌0 the degree of coherence oscillates,
but nonetheless remains small. Indeed, |𝛾 | as a function of distance
behaves like an Airy disk.

5.3 Propagation of Coherence Functions
From our discussion of the Van Cittert–Zernike theorem, we know
that spatial coherence is generated by propagation. In this subsection
we examine the propagation operators of the space-time formulation
as well as the space-frequency formulation. As before, let 𝑢 be a
wave ensemble. Representing a wave, 𝑢 obeys the wave operator:

∇2𝑢 (®r, 𝑡) = 1
𝑐2

𝜕2

𝜕𝑡2
𝑢 (®r, 𝑡) (5.44)

multiply both sides by 𝑢 (®r′, 𝑡 ′)★ and take the time-average:

∇2
®r
〈
𝑢 (®r, 𝑡)𝑢 (®r′, 𝑡 ′)★〉

t =
1
𝑐2

𝜕2

𝜕𝑡2
〈
𝑢 (®r, 𝑡)𝑢 (®r′, 𝑡 ′)★〉

t (5.45)

where the derivatives are with respect to the unprimed coordinates,
®r and 𝑡 . The above results in

∇2
®rΓ

(®r, ®r′, 𝑡 ′ − 𝑡 ) = 1
𝑐2

𝜕2

𝜕𝑡2
Γ
(®r, ®r′, 𝑡 ′ − 𝑡 ) (5.46)

That is, the mutual coherence function propagates in accordance to
the wave operator.
The mutual coherence function can be written as the inverse

Fourier transform of the cross-spectral density, viz.

Γ
(®r, ®r′, 𝜏 ) = ℱ-1{W (®r, ®r′, 𝜔 )}

(5.47)

®r

®r′

®rmirror

𝑅

R̂

𝑟

r̂

𝑟 ′
r̂′Σ

𝑉
𝜌

𝜕𝑉 n̂

ẑ

ẑ⊥

Fig. 4. Propagation of cross-spectral density.

by applying the wave operator (Eq. (4.6)) to each side of the equation
above, and formally interchanging the order of integration and
differentiation, we get

△m Γ
(®r, ®r′, 𝜏 ) = △m ℱ-1{W (®r, ®r′, 𝜔 )}

=
1

2𝜋

∫ ∞

−∞
d𝜔 △m

[W (®r, ®r′, 𝜔 )
𝑒−𝑖𝜔𝜏

]
=

1
2𝜋

∫ ∞

−∞
d𝜔

[
∇2 + 𝜔

2

𝑐2

]
W (®r, ®r′, 𝜔 )

𝑒−𝑖𝜔𝜏 (5.48)

which can only vanish for all time differences, 𝜏 , if the integrand
is identically 0. The same conclusion can also be trivially reached
by considering the spectral decomposition of 𝑢 into elementary
monochromatic wavelets, {𝑣 (®r, 𝜔)𝑒−𝑖𝜔𝑡 }, as discussed in Subsec-
tion 5.1.1. Applying the wave operator to each wavelet in the ensem-
ble and taking the space-frequency ensemble average immediately
shows that indeed the cross-spectral density obeys the Helmholtz
equation.

Hence, we can conclude:

△m Γ
(®r, ®r′, 𝜏 ) = 0 (5.49)[

∇2 + 𝜔
2

𝑐2

]
W (®r, ®r′, 𝜔 )

= 0 (5.50)

that is, the propagation of the mutual coherence is dictated by the
wave operator. And, as expected, the cross-spectral density—being
the Fourier transform pair of the mutual coherence—propagates in
accordance to the Helmholtz equation, which is generally easier to
solve.

5.3.1 Propagation as a diffraction problem. As the mutual coher-
ence and the cross-spectral density functions propagate as waves,
we can formulate the propagation of those coherence functions
as a diffraction problem. We focus on the cross-spectral density.
The cross-spectral density propagates according to the Helmholtz
equation, which calls for a Green function treatment. Recall the
free-space Green function 𝐺0 (Eq. (2.29)):[∇2 + 𝑘2]𝐺0

(®r − ®r′) = −𝛿3 (®r − ®r′) (5.51)
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Consider a product of two free-space Green functions that are acted
upon by a couple of Helmholtz operators:[∇′2

1 + 𝑘2] [∇′2
2 + 𝑘2]𝐺0

(®r1 − ®r′1
)★𝐺0

(®r2 − ®r′2
)

= 𝛿3 (®r1 − ®r′1)𝛿3 (®r2 − ®r′2) (5.52)

We denote ∇2
1,2, ∇′2

1,2 as the laplacians with respect to ®r1,2 and ®r′1,2,
respectively. Multiply both sides byW and integrate twice over the
space𝑉 = {𝑧 > 0} ∩𝐵𝜌 , where 𝐵𝜌 is a ball of some radius 𝜌 centred
at the origin (see Fig. 4 for a visualization of the geometry):

W(®r1, ®r2, 𝜔) =
∫
𝑉

d3®r′1
[∇′2

1 + 𝑘2]𝐺0
(®r1 − ®r′1

)★
×

∫
𝑉

d3®r′2
[∇′2

2 + 𝑘2]𝐺0
(®r2 − ®r′2

) W (®r′1, ®r′2, 𝜔 )
(5.53)

Consider the second integral on the right-hand side: By noting that
𝑘2 W = −∇′2

2 W (directly from Eq. (5.50), the Helmholtz equation)
and applying Green’s second identity we get∫

𝑉
d3®r′2

[∇′2
2 + 𝑘2]𝐺0 W =

∫
𝑉

d3®r′2
[W∇′2

2 𝐺0 −𝐺0∇′2
2 W]

=
∮
𝜕𝑉

d2®r′2 n̂ · [W ∇
′
2𝐺0 −𝐺0∇

′
2 W

]
(5.54)

where ∇′
2 is the gradient with respect to ®r′2 and 𝜕𝑉 is th boundary of

𝑉 with n̂ being its outward normal at a point. Denote the shorthand
®R2 = ®r2 − ®r′2. The gradient of the free-space Green function follows
immediately from rewriting Eq. (2.29) in spherical coordinates:

∇
′𝐺0

(®r2 − ®r′2
)
= R̂2

𝜕

𝜕𝑅2
𝐺0 (𝑅2) = R̂2

𝑖𝑘𝑅2 − 1
4𝜋𝑅2

2
𝑒𝑖𝑘𝑅2 (5.55)

where 𝑅2 = | ®R2 | and R̂2 = ®R2/𝑅2 is the radius basis vector in spher-
ical coordinates (see Fig. 4). The Sommerfeld radiation condition
(Eq. (2.28)) applies to outgoing spherical wavelets, and therefore
it applies to the cross-spectral density as well. Therefore W → 0
as ®r′2 → ∞ at least faster than 1/𝑅2, and thus the integrand on the
right-hand side in Eq. (5.54) decays to 0 faster than 𝑅−2

2 . We conclude
that the integrand vanishes everywhere at the limit ®r′2 → ∞. Hence,
by taking the limit 𝜌 → ∞ (recall 𝜌 is the radius of the half-sphere
𝜕𝑉 ) and substituting the expressions for 𝐺0 and its gradient into
Eq. (5.54), we get

lim
𝜌→∞

∫
𝑉

d3®r′2
[∇′2

2 + 𝑘2]𝐺0 W

= −
∫
ẑ⊥

d2®r′2
𝑒𝑖𝑘𝑅2

4𝜋𝑅2
ẑ ·

[
R̂2
𝑖𝑘𝑅2 − 1
𝑅2

W−∇′
2 W

]
(5.56)

where ẑ⊥ is the orthogonal complement of the 𝑧-axis, i.e. the 𝑥𝑦-
plane. The integral above is a superposition of spherical wavelets
that propagate from the plane ẑ⊥. Indeed, it is a mathematical formu-
lation of Huygens’ principle and the integral itself is nothing more
than the Kirchhoff diffraction integral. Proceeding with the same
approach we also apply Kirchhoff’s approximation and assume that
the electric field (and in turn, the cross-spectral density) vanishes
everywhere on ẑ⊥, except an area Σ ⊂ ẑ⊥ which can be considered
either as an aperture or a light source. Kirchhoff’s boundary con-
ditions produce an overdetermined problem by also assuming that
the derivative of W vanishes on ẑ⊥. This is not necessary, and we

follow Zangwill [2013] by replacing the free-space Green function
with a mirror-image variant:

�̃�0
(®r, ®r′) ≜ 𝐺0

(®r − ®r′) −𝐺0
(®rmirror − ®r′) (5.57)

where in the second Green function ®rmirror = x̂𝑟𝑥 + ŷ𝑟𝑦 − ẑ𝑟𝑧 , i.e.
®r mirrored with respect to the ẑ⊥ plane. Clearly, �̃�0 vanishes on
®r ∈ ẑ⊥, which dispenses with the ∇′

2 W term—the Neumann bound-
ary condition—in Eqs. (5.54) and (5.56). When acted upon by the
Helmholtz operator �̃�0 produces two Dirac deltas, however one of
them lies outside of𝑉 and does not contribute to Eq. (5.53). Hence, by
replacing𝐺0 with �̃�0 in Eq. (5.54) we are left with a mathematically
well-defined problem and Eq. (5.56) reduces to

lim
𝜌→∞

∫
𝑉

d3®r′2
[∇′2

2 + 𝑘2]�̃�0 W = −
∫
Σ

d2®r′2 W
𝜕

𝜕𝑧

[
𝑒𝑖𝑘𝑅2

2𝜋𝑅2

]
(5.58)

which is the Rayleigh-Sommerfeld diffraction integral of the first
kind [Born and Wolf 1999]. The integral above is a solution of the
Helmholtz equation in the 𝑧 > 0 half-space expressed in terms of
the boundary values on Σ.
In an entirely analogous manner the same process is readily

applied to the first integral (over ®r′1 ∈ 𝑉 ) in Eq. (5.53). Note that
𝜕
𝜕𝑧 = 𝜕

𝜕𝑅 𝑗

𝜕
𝜕𝑧𝑅 𝑗 = 𝑧

𝑅 𝑗

𝜕
𝜕𝑅 𝑗

and 𝜕
𝜕𝑅 𝑗

𝑒𝑖𝑘𝑅𝑗

𝑅 𝑗
= 𝑒𝑖𝑘𝑅𝑗

𝑅 𝑗
[𝑖𝑘 − 1/𝑅 𝑗 ], for

𝑗 ∈ {1, 2}. At which point we finally end up with the following
expression

W (®r1, ®r2, 𝜔) = 1
4𝜋2

∫
Σ

d2®r′1
∫
Σ

d2®r′2 W
(®r′1, ®r′2, 𝜔 )

× 𝑧1𝑧2
𝑅2

1𝑅
2
2
𝑒𝑖𝑘 (𝑅1−𝑅2)

(
−𝑖𝑘 − 1

𝑅1

) (
𝑖𝑘 − 1

𝑅2

)
(5.59)

where 𝑧1 and 𝑧2 are the 𝑧-components of ®r1 and ®r2, respectively.
Denote r̂𝑗 as the unit vector in direction of ®r𝑗 and 𝑟 𝑗 the distance
to ®r𝑗 , and similarly with primed variables (see Fig. 4). Then, in the
Fresnel-Fraunhofer diffraction region—far from the source with
respect to the characteristic size of the source—we can approximate
𝑅1 ≈ 𝑟1 and 𝑅2 ≈ 𝑟2 (for ®r′𝑗 ∈ Σ). Furthermore, for visible light
clearly 𝑘𝑟1,2 ≫ 1 in that region, and thus the fractions 1/𝑅 𝑗 are
negligible. In the high-frequency exponent a better approximation
is required and we power expand 𝑅1,2 (in similar manner to the
proof of Theorem 5.3):

𝑅 𝑗 =
���®r𝑗 − ®r′𝑗

��� = 𝑟 𝑗 + 𝑟 ′𝑗 2 − 2®r𝑗 · ®r′𝑗
2𝑟 𝑗

+ O
(

1
𝑟2
𝑗

)
≈ 𝑟 𝑗 − r̂𝑗 · ®r′𝑗 (5.60)

Applying all of the above, Eq. (5.59) simplifies to

W (®r1, ®r2, 𝜔) ≈ cos𝜃1 cos𝜃2
𝜆2𝑟1𝑟2

𝑒𝑖𝑘 (𝑟1−𝑟2)

×
∫
Σ

d2®r′1 𝑒−𝑖𝑘 r̂1 ·®r′1
∫
Σ

d2®r′2 W
(®r′1, ®r′2, 𝜔 )

𝑒𝑖𝑘 r̂2 ·®r′2 (5.61)

where 𝜆 = 2𝜋
𝑘 is the wavelength and 𝜃 𝑗 is the inclination angle, i.e.

cos𝜃 𝑗 = r̂𝑗 · ẑ. The above formula is the (scalar) propagation integral
for the cross-spectral density, and a essentially is a pair of 2D spatial
Fourier transforms.

, Vol. 1, No. 1, Article . Publication date: April 2021.



Generic Framework for Physical Light Transport - Derivations • 15

6 POLARIZATION
The electric and magnetic fields supporting propagating electromag-
netic waves generally admit transverse components. This is sug-
gested by the Poynting theorem and the Poynting vector (Eq. (4.15)),
where we can see that positive energy flow must be perpendicular
to the (real) fields. The wave’s polarization describes the geometry
of the transverse oscillations of the supporting fields, and note that
the polarization of the electric field is generally not the same as the
polarization of the magnetic field (for example, the beam-like wave
packet presented previously).

Assume that a wave packet’s direction of propagation is concen-
trated along the +ẑ direction. Denote {ê1, ê2} as the orthonormal
basis of the orthogonal complement ẑ⊥ of the propagation direction.
Then, we concentrate on studying the polarization of the (time-
dependent) electric field ®E. We treat the electric field as a stationary,
at least in the wide sense, stochastic process and let 𝐸1,2 = ê1,2 · ®E be
the mutually-orthogonal transverse components of the electric field.
Define the polarization matrix as the cross-correlations between the
transverse components:

𝑱 ≜
𝑐

8𝜋

[〈
𝐸1𝐸★1

〉
t

〈
𝐸1𝐸★2

〉
t〈

𝐸2𝐸★1
〉
t

〈
𝐸2𝐸★2

〉
t

]
(6.1)

The polarization matrix was introduced by Born and Wolf in older
literature as the “coherency matrix”, before the advent of optical
coherence theory, however the term is a misnomer: The polariza-
tion matrix elements are the (equal-time) cross-correlations of the
transverse fields at a single spatial position, and the matrix describes
the polarization characteristics of the wave packet at that position.
Coherence studies the cross-correlation between points in multi-
ple space and time points. Denote the matrix elements 𝐽𝑥𝑦 , with
𝑥,𝑦 ∈ {1, 2}, and we first briefly consider the mathematical prop-
erties of the polarization matrix. The matrix is clearly Hermitian,
i.e. 𝑱 † = 𝑱 . By applying Schwarz’s inequality (Eq. (1.19)) we deduce
that

|𝐽12 | = |𝐽21 | ≤
√︁
|𝐽11 |

√︁
|𝐽22 | (6.2)

and it follows that 𝑱 is also positive semi-definite, i.e. 𝑱 ⪰ 0, and
thus det 𝑱 ≥ 0 and all the eigenvalues are real and non-negative.
The diagonal elements of the equal-time polarization matrix are
always real, and are the time-averaged energy density carried by the
electric field. For the idealized case of a plane-wave, that is exactly
the observed intensity (Eq. (4.18)) of each orthogonal component
of the wave, and thus the intensity of the wave is the sum of the
diagonal elements, i.e.

𝐼 = tr 𝑱 (6.3)

Also note that the determinant and the trace of 𝑱 are invariant under
the choice of the basis {ê1, ê2}: Indeed, for any rotation matrix 𝑹
the rotated transverse field components become[

𝐸 ′1
𝐸 ′2

]
= 𝑹

[
𝐸1
𝐸2

]
=

[
𝐸1 cos𝜃 − 𝐸2 sin𝜃
𝐸1 sin𝜃 + 𝐸2 cos𝜃

]
(6.4)

where 𝜃 is any (counter-clockwise) rotation angle. With a little
algebra we can verify that if the polarization matrix of the new
decomposition is 𝑱 ′, then det 𝑱 = det 𝑱 ′ and tr 𝑱 = tr 𝑱 ′, as we would
physically expect. It is also noteworthy that the polarization matrix

of a superposition of statistically independent waves is simply the
sum of the polarization matrices of each wave. This result follows
immediately from the fact that the time-average of independent
process vanishes.

We are now ready to define the degree of correlation of the orthog-
onal components, which is the normalized off-diagonal element

𝑗12 ≜
1√

𝐽11
√
𝐽22

𝐽12 (6.5)

at a spatial position of interest. Clearly, | 𝑗12 | ≤ 1 (when one of the
diagonal elements vanishes, we can check that | 𝑗12 | = 1 at the limit).

Unpolarized light. We define unpolarized light such that its polar-
ization matrix fulfils the following: (1) under any choice of basis, the
transverse field components are uncorrelated; and (2) the observed
intensity along any transverse direction is identical. Or, equivalently,
| 𝑗12 | = 0 and 𝐽11 = 𝐽22. It is easy to check that light that is unpo-
larized remains unpolarized regardless of how we decompose the
transverse field oscillations. Given the conditions above, we can
write the polarization matrix of an unpolarized wave as

𝑱 u =
1
2

[
𝐼u

𝐼u

]
(6.6)

where 𝐼u is the intensity of the wave (for a plane wave).

Polarized light. Given | 𝑗12 | = 1, the transverse oscillations are
fully correlated and we call such light completely polarized light. It
trivially follows that

det 𝑱 = 𝐽11 𝐽22 − 𝐽12 (𝐽12)★ = 𝐽11 𝐽22 −
���√︁𝐽11

√︁
𝐽22 𝑗12

���2 = 0 (6.7)

and, as the determinant is basis invariant, we deduce that completely
polarized light, like unpolarized light, remains completely polarized
under rotation of the transverse frame. The polarization matrix in
this case can be written in the following form:

𝑱 p =
𝑐

8𝜋

[
𝐽11

√
𝐽11

√
𝐽22𝑒𝑖𝜑√

𝐽11
√
𝐽22𝑒−𝑖𝜑 𝐽22

]
(6.8)

where 𝜑 is any real number.

Corollary 6.1. A completely polarized polarization matrix has
eigenvalues 0 and 𝐽11 + 𝐽22, and its Cholesky decomposition is 𝑳𝑳†
with

𝑳 =

[ √
𝐽11 0√

𝐽22𝑒−𝑖𝜑 0

]
(6.9)

Observe from Eq. (6.8) that the phase difference between 𝐸1 and
𝐸2, 𝜑 , must be independent of time, as otherwise 𝐸1 and 𝐸2 are
not fully correlated. When 𝜑 = 𝑚𝜋 , for some integer𝑚, then the
transverse oscillations are fully in-phase or delayed by 𝜋 (which
is equivalent to fully in-phase with a negated 𝐸2), and we deduce
that such a wave is completely linearly polarized. A necessary and
sufficient condition for completely linearly polarized light is then
det 𝑱 = 0 and Im 𝑗12 = 0. When Im 𝑗12 ≠ 0 the wave will gener-
ally be a (correlated) superposition of linearly polarized light and
non-linearly polarized light. Under the context of a monochromatic
plane-wave, a typical treatment of the subject of optical polarization
further classifies the states of polarization into circular polarization
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(𝜑 = ±𝑖), and elliptical polarization (the general complete polariza-
tion state, with linear and circular being special cases). However,
we deal predominantly with polychromatic light, and circular and
elliptical polarizations do not generally arise in polychromatic wave
packets, because the different wavelengths admit distinct spatial
frequencies. Instead, we focus on analysing what fraction of the
energy carried by a wave packet is polarised, and in what transverse
direction most of the polarized energy is concentrated.
To that end, the major axis of the polarization matrix is defined

as the transverse direction in which most of the energy of the wave
packet is concentrated. The following lemma provides an easy for-
mula to locate that direction.

Lemma 6.2. For any polarization matrix, the angle between the
major axis and ê1 is𝜓 , where

tan (2𝜓 ) = 2 Re 𝐽12
𝐽11 − 𝐽22

Proof. See Born and Wolf [1999]. □

Suppose we were to align ê1 with the major axis of a polarization
matrix by applying a (counter-clockwise) rotation through an angle
𝜓 to the transverse frame. Then, 𝐽11 would be maximized in that
frame. Under that frame, the quantity 𝐽11−𝐽22

𝐽11+𝑗22
is called the degree of

linear polarization. For example, if the polarization matrix were to
be completely linearly polarized then 𝐽22 would vanish, meaning
that the entirety of the energy is concentrated in the direction of the
major axis and the degree of linear polarization is 1. On the other
hand, polarization matrices of unpolarized light or of completely
polarized light with Re 𝑗12 = 0 admit 𝐽11 = 𝐽22 under any frame, as
the energy is equally distributed in any direction and the degree of
linear polarization is 0.
As a side note, the geometric shapes traced by transverse field

lines of polychromatic light are called “Lissajous” figures. Such a fig-
ure is well-defined and closes upon itself with a regular period when
the frequencies composing the wave packet are commensurable,
that is 𝜔 𝑗+1/𝜔 𝑗 ∈ Q for all (finite) frequencies 𝜔 𝑗 . Clearly a highly
artificial scenario. Those intricacies arise even before we consider
the random fluctuations that accompany light from any natural
source, in which case the traced Lissajous figures become highly
irregular and generally are of little physical insight or observable
consequence. For more information on geometric characteristic of
“Lissajous” figures, see Freund [2003].

6.0.1 Decomposition of light of any state of polarization. Consider
again a polychromatic wave packet propagating in direction ẑ. Its
polarization matrix 𝑱 , under the most general conditions, is as pre-
sented in Eq. (6.1). We will now show that it is possible to decompose
the wave packet into a superposition of unpolarized light and com-
pletely polarized light.

Lemma 6.3 (Canonical Decomposition of the Polarization
Matrix). Any polarization matrix 𝑱 can always be decomposed into

𝑱 = 𝑱 u + 𝑱 p

where each matrix retains the mathematical properties of the polariza-
tion matrix, namely Hermiticity and positive semi-definiteness, and
the following holds:

• 𝑱 u = 𝐼u
2 𝑰 , that is 𝑱 u describes the completely unpolarized part

of the light.
• det 𝑱 p = 0, i.e. 𝑱 p is a completely polarized polarization matrix.

Furthermore, this decomposition is unique.

Proof. Let 𝐽𝑥𝑦 , with 𝑥,𝑦 ∈ {1, 2}, be the elements of the matrix
𝑱 and 𝑗12 = (𝐽11 𝐽22)

1
2 𝐽12 be the degree of correlation, as before. We

are looking for a decomposition

𝑱 =
𝐼u
2 𝑰 + 𝑱 p (6.10)

such that det 𝑱 p = 0, which implies that |𝑱 − 1
2 𝐼u𝑰 | = 0, i.e. 1

2 𝐼u is an
eigenvalue of 𝑱 . 𝑱 is Hermitian and positive semi-definite, therefore
it has real non-negative eigenvalues. Note further that if both the
eigenvalues vanish, 𝑱 must be a singular matrix and det 𝑱 = 0, i.e.
it is completely polarized, then 𝑱 u = 0. Solving for the eigenvalues
we get

𝐼u = 𝐽11 + 𝐽22 ±
√︃
(𝐽11 − 𝐽22)2 + 4𝐽11 𝐽22 | 𝑗12 |2 (6.11)

The completely polarized fraction of the energy would then be

𝑱 p = 𝑱 − 𝑱 u =

[
𝐽 ′11 𝐽12
𝐽★12 𝐽 ′22

]
(6.12)

where 𝐽 ′𝑥𝑥 = 𝐽𝑥𝑥 − 1
2 𝐼u. Note that 𝐽

′
𝑥𝑥 is negative when we select the

greater eigenvalue (with the positive sign), violating the positive
semi-definiteness requirement. Therefore, 𝐼u must be the smaller
eigenvalue, and 𝑱 u follows immediately.

Clearly, as we always select the smaller eigenvalue, the decompo-
sition is unique. □

Corollary 6.4. Let the following be a decomposition of a com-
pletely polarized matrix 𝑱 p into a couple of polarization matrices:

𝑱 p = 𝑱 ′p + 𝑱 ′′p
We state, without proving, that the only possible such decomposition
is a trivial decomposition, i.e. 𝑱 ′p = 𝛼 𝑱 p and 𝑱 ′′p = (1 − 𝛼)𝑱 p for some
0 ≤ 𝛼 ≤ 1. It is easy to check that a completely polarized matrix
admits no decomposition with a partially polarized or unpolarized
matrix. Of more consequence is the conclusion that the phase-shifts,
i.e. 𝜑 in Eq. (6.8), of each of the decomposing matrices is identical to
the phase-shift of 𝑱 .

That is, a completely polarized wave ensemble is fully corre-
lated, and therefore can not be decomposed into different states
of polarization. For example, a completely polarized matrix can
not be decomposed into a completely linearly polarized part and
the non-linearly polarized part, even under a high degree of linear
polarization.
To conclude, we define the important degree of polarization as

the ratio between the polarized fraction of the energy and the total
energy carried by the wave:

P ≜
tr 𝑱 p
tr 𝑱 =

𝐼p
𝐼

=

√︄
1 − 4 det 𝑱

(tr 𝑱 )2 (6.13)

where the identity 𝐼p = (tr 𝑱 )2 − 4 det 𝑱 follows directly from
Eq. (6.11). When P = 1 the light is completely polarized, while
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P = 0 indicates unpolarized light. When 0 < P < 1 we say the light
is partially polarized.

6.1 Unified Theory of Polarization and Coherence
We now make contact with optical coherence theory presented in
Section 5. The discussion in this section outlines a unified theory of
optical coherence that takes polarization into account and presents
a few interesting results. Our discussion is based on Wolf [2007].

The polarization matrix presented in the previous subsection can
be generalized into the mutual coherence matrix that also accounts
for coherence phenomena, viz.

𝚪(®r1, ®r2, 𝜏) ≜ 𝑐

8𝜋

[
Γ11 (®r1, ®r2, 𝜏) Γ12 (®r1, ®r2, 𝜏)
Γ21 (®r1, ®r2, 𝜏) Γ22 (®r1, ®r2, 𝜏)

]
=

𝑐

8𝜋

[
⟨𝐸1 (®r1,𝑡 )𝐸1 (®r2,𝑡+𝜏)★⟩t ⟨𝐸1 (®r1,𝑡 )𝐸2 (®r2,𝑡+𝜏)★⟩t
⟨𝐸2 (®r1,𝑡 )𝐸1 (®r2,𝑡+𝜏)★⟩t ⟨𝐸2 (®r1,𝑡 )𝐸2 (®r2,𝑡+𝜏)★⟩t

]
(6.14)

where Γ𝑥𝑦 is the mutual coherence function relating the orthogonal
field components. The above is the space-time formulation of optical
coherence, and the space-frequency readily follows with the cross-
spectral density matrix:

𝒲 (®r1, ®r2, 𝜔) ≜ 𝑐

8𝜋

[W11 (®r1, ®r2, 𝜔) W12 (®r1, ®r2, 𝜔)
W21 (®r1, ®r2, 𝜔) W22 (®r1, ®r2, 𝜔)

]
=

𝑐

8𝜋

[
⟨𝐸1 (®r1)𝐸1 (®r2)★⟩𝜔 ⟨𝐸1 (®r1)𝐸2 (®r2)★⟩𝜔
⟨𝐸2 (®r1)𝐸1 (®r2)★⟩𝜔 ⟨𝐸2 (®r1)𝐸2 (®r2)★⟩𝜔

]
(6.15)

where the ensemble averages are over same-frequency wavelets (see
Eq. (5.23)). The relation between the matrix-versions of the mutual
coherence and cross-spectral density is preserved, with them being
Fourier transform pairs, viz:

𝒲 (®r1, ®r2, 𝜔) = ℱ{𝚪(®r1, ®r2, 𝜏)} (6.16)
When ®r1 = ®r2, both matrices, 𝒲 and 𝚪, clearly are Hermitian
and positive semi-definite. Therefore, the cross-spectral density
and mutual coherence matrices evaluated at a point, i.e. 𝒲 (®r, ®r, 𝜔)
and 𝚪(®r, ®r, 𝜏), are polarization matrices. Accordingly, the rest of our
analysis of polarization matrices applies.

The mutual coherence and cross-spectral density matrices are the
akin to their scalar counterparts discussed in Section 5. Under matrix
formulation, the energy carried by a wave becomes 𝐼 (®r) = tr 𝚪(®r, ®r),
where we again abuse notation and drop the time-delay for equal-
time mutual coherence, and similarly the spectral density becomes
𝓈(®r, 𝜔) ≜ tr𝒲 (®r, ®r, 𝜔). Then, in an analogous way, we define the
matrix degree of coherence (matrix analogue of Eq. (5.8)) and the
matrix spectral degree of coherence (matrix analogue of Eq. (5.15))
as

𝜸 (®r1, ®r2, 𝜏) ≜ 𝚪(®r1, ®r2, 𝜏)√︁
tr 𝚪(®r1, ®r1)

√︁
tr 𝚪(®r2, ®r2)

(6.17)

𝔀(®r1, ®r2, 𝜔) ≜ 𝒲 (®r1, ®r2, 𝜔)√︁
tr𝒲 (®r1, ®r1, 𝜔)

√︁
tr𝒲 (®r2, ®r2, 𝜔)

(6.18)

where the positive semi-definiteness of the matrices implies that
|𝜸 | ≤ 1 and likewise |𝔀| ≤ 1.
The interference laws also mostly retain their scalar form. Let

®E(®r, 𝑡) be the electric field of a wave ensemble. We are interested
in the observed intensity of a superposition between the energy

arriving from different points, ®E′(®r, 𝑡) = ®E(®r1, 𝑡1) + ®E(®r2, 𝑡2). The
expression for the intensity is the matrix form of the interference
law for stationary fields (analogue of Eq. (5.9)):

𝐼 ′(®r, 𝑡) = tr 𝚪(®r1, ®r1) + tr 𝚪(®r2, ®r2)
+ 2

√︁
tr 𝚪(®r1, ®r1)

√︁
tr 𝚪(®r2, ®r2) Re tr𝜸 (®r1, ®r2, 𝑡2 − 𝑡1) (6.19)

In the spectral domain, the matrix form of the spectral interference
law (Eq. (5.26)) takes on the familiar form:

𝓈(®r, 𝜔) = tr𝒲 (®r, ®r, 𝜔) = 𝓈(®r1, 𝜔) + 𝓈(®r2, 𝜔)
+ 2

√︁
𝓈(®r1, 𝜔)

√︁
𝓈(®r2, 𝜔) Re

[
tr𝔀(®r1, ®r2, 𝜔)𝑒−𝑖𝜔

𝑟1−𝑟2
𝑐

]
(6.20)

where 𝑟1 and 𝑟2 are the distances from ®r1 and ®r2, respectively, to the
observation point ®r. The derivation is identical to the derivations
that preceded Eq. (5.26).

The matrix-based space-time and the space-frequency formalisms
of optical coherence serve to merge polarization and coherence into
a single entity: The diagonal elements express the coherence prop-
erties, while the off-diagonal elements describe the polarization
characteristics. This is not done solely in the name of convenience—
both polarization and coherence affect observable properties of
electromagnetic waves and guide their interaction with matter. In-
deed, polarization and coherence might appear as unrelated aspects
at first, but nonetheless they are very closely intertwined in de-
scribing the behaviour of a wave ensemble. This surprisingly tight
relationship is demonstrated by the observation that the coherence
properties of the wave induce polarization changes on propagation
[Korotkova and Wolf 2005].

6.2 Diffraction of Polarized Light
In Subsection 5.3.1 we formulated the propagation of the cross-
spectral density as a scalar diffraction problem. A scalar diffraction
formulation is useful when sourcing waves from a light source, as
polarization is essentially always either strictly linear (lasing) or
random (spontaneous emission sources). Further, scalar diffraction
operates on a single scalar quantity, which might be assumed to be
the electric or magnetic field of a plane wave. However, unless the
plane wave is at perfect normal incidence, applying scalar diffrac-
tion (Eq. (5.50)) to the electric and magnetic fields separately does
not produce fields that comply with Maxwell’s equations. We now
formulate the diffraction problem for electromagnetic waves under
the context of the more rigorous vector diffraction theory.
Under vector diffraction theory we treat incoming light as an

electromagnetic incident plane wave, with its electric and magnetic
components known on some aperture Σ, and we seek a unique
solution that satisfies Maxwell’s equations (see Fig. 4). As before,
the geometry is an aperture that is located on 𝑧 = 0 and we solve for
®r = (𝑥,𝑦, 𝑧 ≥ 0). We follow Zangwill [2013] by looking for solutions
formulated as a superposition of monochromatic spherical waves,
each varying as 𝑒−𝑖𝜔𝑡 , with 𝜔 = 𝑐𝑘 being the angular frequency of
interest. That approach gives rise to Smythe’s diffraction formula:

®E(®r) = 2∇ ×

∫
𝑧′=0

d2®r′⊥𝐺0
(®r − ®r′⊥

)
ẑ × ®E(®r′⊥)

(6.21)

®B(®r) = − 𝑖

𝑘0
∇ × ®E(®r) (6.22)
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with 𝐺0 being the free-space Green function. The above expression
for the magnetic field arises immediately from Maxwell equations,
Eq. (4.2). It can be verified that if ®E satisfies Maxwell’s divergence
equation,∇· ®E = 0 (Eq. (4.1)), on the aperture, then∇· ®E = 0 on 𝑧 > 0
as well. Smythe’s formula is a manifestation of Huygens’ principle,
with every point on the aperture being regarded a source of spherical
wavelets. With a little algebra we can rewrite the expression for the
electric field as

®E(®r) = −2
∫
𝑧′=0

d2®r′⊥
[
ẑ × ®E(®r′⊥) ]

× ∇𝐺0 (6.23)

We proceed in a fashion similar to the scalar diffraction case. At
the Fresnel-Fraunhofer diffraction region, far from the aperture with
respect to the wavelength and characteristic size of the aperture,
we can simplify considerably. The gradient of the free-space Green
function was computed previously (Eq. (5.55)):

∇𝐺0
(®r − ®r′⊥

)
= R̂

𝑖𝑘𝑅 − 1
4𝜋𝑅2 𝑒𝑖𝑘𝑅 (6.24)

with ®R = ®r − ®r′⊥ and 𝑅 = | ®R| , R̂ =
®R
𝑅 , as usual. Using the power

expansion 𝑅 ≈ 𝑟 − r̂ · ®r′⊥ (Eq. (5.60)), as well as the fact that 𝑘𝑅≫ 1,
we get

∇𝐺0
(®r − ®r′⊥

) ≈ 𝑖𝑘 r̂𝑒𝑖𝑘𝑟𝑒−𝑖𝑘 r̂·®r′⊥4𝜋𝑟 (6.25)

As with scalar diffraction, we apply the Kirchhoff approximation,
that is ẑ × ®E = 0 everywhere on 𝑧 = 0 except the aperture Σ ⊂
{𝑧 = 0}. This is a good approximation at the high-frequency limit
with wavelengths small compared with the aperture size. Finally, by
substituting Eq. (6.25) into Eq. (6.23) the far-field Smythe’s diffraction
formula under the Kirchhoff approximation becomes

®E(®r) = 𝑖𝑘 𝑒
𝑖𝑘𝑟

2𝜋𝑟 r̂ ×
∫
Σ

d2®r′⊥
[
ẑ × ®E(®r′⊥) ]

𝑒−𝑖𝑘 r̂·®r
′⊥ (6.26)

Generic Framework for Physical
Light Transport

7 RENDERING EQUATIONS
In this section we derive a set of generic rendering equations for
free-space light transport.

7.1 Sourcing of Electromagnetic Waves
In this subsection, we derive formal expressions for the coherence
functions of a wave ensemble radiated by a source, and we start
by discussing a natural (“incoherent”) light source. As previously
discussed, such a natural source would be a spontaneous emission
source—essentially a collection of independent, elementary radiators
(molecules, atoms, electrons).

Let 𝑆 be the light source and 𝑉 ⊂ R3 its volume. The power
spectral density of the light source—which describes the spectrum
of the emitted light by the source—is denoted as Λ(𝜔). It was shown
in Subsection 5.1.1 that a wave ensemble can always be written as
a decomposition into monochromatic wavelets, viz. {𝑣 (®r, 𝜔)𝑒−𝑖𝜔𝑡 }.
Further, let 𝑣s 𝑒−𝑖𝜔𝑡 be a realization that describes the radiation from
an elementary radiator at point ®s ∈ 𝑉 . The source radiates incoher-
ently, therefore it might seem justified to let

〈
𝑣s (®s) 𝑣q (®q)★〉

𝜔 ≡ 0
for every ®s ≠ ®q. However, in that case we can immediately deduce
that W ≡ 0 everywhere away from the source (directly via the
cross-spectral density propagation Eq. (5.61)). Indeed, a perfectly
incoherent wave does not give rise to a radiation field and does not
propagate! A propagating wave must admit spatial coherence over
an extent of, roughly, a wavelength [Goodman 2015]. Experiments
performed by Carminati and Greffet [1999] show that the near-field
spatial coherence of thermal (natural) light is roughly 1

2𝜆 when
resonant surface waves, most notably surface-plasmon polaritons,
are ignored (those surface resonances decay sharply away from the
source and do not give rise to a Fresnel-region radiation field). With
that in mind, we elect to model the spatial coherence (inside the
source) as a Gaussian with a deviation of half a wavelength:

W (®s, ®q, 𝜔) = 〈
𝑣s (®s) 𝑣q (®q)★〉

𝜔 =
1

4𝜋 Λ(𝜔)𝑒
− 1

2

( |®s−®q|
𝜆/2

)2

(7.1)

where ®s, ®q ∈ 𝑉 are elementary radiators and 1
4𝜋 the isotropic phase

factor, as each elementary radiator in a spontaneous emission source
radiates isotropically. In addition to experimental evidence, we also
justify the order-of-magnitude guess of the spatial coherence length
(inside the source) via the observation that it only serves to scale
the final expression for the cross-spectral density of the sourced
light by a constant, and does not affect its shape.

The cross-spectral density above is defined only in the volume of
the light source. In-order to extend the definition to the entire space
we proceed by substituting W into the free-space propagation of a
sourced cross-spectral density, Eq. (5.61):

W (®r1, ®r2, 𝜔) = cos𝜃1 cos𝜃2
𝜆2𝑟1𝑟2

𝑒𝑖𝑘 (𝑟1−𝑟2)

×
∫
𝑉

d3®s 𝑒−𝑖𝑘 r̂1 ·®s
∫
𝑉

d3®q 〈
𝑣s (®s) 𝑣q (®q)★〉

𝜔 𝑒
𝑖𝑘 r̂2 ·®q (7.2)
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where the points of interest are ®r1 and ®r2, and as usual, 𝜔 = 𝑘𝑐
is the angular frequency. It is typically very safe to assume that
the characteristic length of the light source is large compared to
wavelength. Hence, due to the Gaussian term in Eq. (7.1) being a
function of the distance between the points ®s and ®q only, the second
integral only contributes in a spatial region very small compared
to 𝑉 . Then, by rewriting the second integral as an integral over
the entire space centred at ®s, the following becomes a very good
approximation:∫

𝑉
d3®q 〈

𝑣s (®s) 𝑣q (®q)★〉
𝜔 𝑒

𝑖𝑘 r̂2 ·®q

≈ Λ(𝜔)
4𝜋

∫
R3

d3®q′ 𝑒−2 |®q′ |2
𝜆2 𝑒𝑖𝑘 r̂2 · (®q′+®s) (7.3)

where we performed the variable change ®q′ = ®q − ®s to transform
the origin to ®s. Expand the second integral in spherical coordinates,
with 𝜉 ′ being the radial coordinate, 𝜙 ′ the azimuthal angle and 𝜗 ′
the polar angle, such that the direction when 𝜗 ′ = 𝜙 ′ = 0 aligns with
r̂2. Then, r̂2 · ®q′ = 𝜉 ′ cos𝜗 ′ and we integrate yielding an elementary
closed-form solution∫
R3

d3®q′ 𝑒−2 |®q′ |2
𝜆2 𝑒𝑖𝑘 r̂2 · (®q′+®s)

≈ 𝑒𝑖𝑘 r̂2 ·®s
∫ ∞

0
d𝜉 ′ 𝜉 ′2𝑒−2 𝜉′2

𝜆2

∫ 2𝜋

0
d𝜙 ′

∫ 𝜋

0
d𝜗 ′ sin𝜗 ′𝑒𝑖𝑘𝜉

′ cos𝜗 ′

= 2
√

2𝑒−
𝜋2
2 𝜋9/2 𝑒

𝑖𝑘 r̂2 ·®s

𝑘3 ≈ 𝜋 𝑒
𝑖𝑘 r̂2 ·®s

𝑘3 (7.4)

where we simplify by remembering that 𝑘 = 2𝜋/𝜆. The exact value
of the leading constant above matters little as it only scales the
cross-spectral density and does not affect its shape.

Having integrated the inner integral, we are now ready to make
the usual assumption that ®r1 and ®r2 are close to each other but far
form the source, hence setting 𝜃1 ≈ 𝜃2 ≈ 0. Substituting Eqs. (7.3)
and (7.4) into Eq. (7.2) and simplifying allows us to rewrite Eq. (7.2)
as a spatial Fourier transform:

W (®r1, ®r2, 𝜔) ≈ Λ(𝜔)
4𝑘3

𝑒𝑖𝑘 (𝑟1−𝑟2)

𝑟1𝑟2

∫
𝑉

d3®s 𝑒−𝑖𝑘 (r̂2−r̂1) ·®s

=
Λ(𝜔)
4𝑘3

𝑒𝑖𝑘 (𝑟1−𝑟2)

𝑟1𝑟2
ℱ{1𝑉 }[𝑘 (r̂2 − r̂1)] (7.5)

where 1𝑉 is the characteristic function of the volume V, i.e. 1𝑉 (®r) =
1 when ®r ∈ 𝑉 and 1𝑉 (®r) = 0 when ®r ∉ 𝑉 . Thus, the cross-spectral
density is proportional to the three-dimensional spatial Fourier
transform of the source’s geometry. If that geometry is, or can be
approximated by, a ball of radius 𝜌 , then the Fourier transform
admits a closed-form expression:

W (®r1, ®r2, 𝜔) ≈ 1√
2
(𝜋𝜌) 3

2 Λ(𝜔)𝑒𝑖𝑘 (𝑟1−𝑟2)
J3

2

[
𝜌𝑘 |r̂1 − r̂2 |

]
𝑟1𝑟2 |r̂1 − r̂2 |

3
2

(7.6)

and, for convenience, we have folded the wavelength-dependent
1/𝑘3/2 term into the Λ.

An important theoretical observation is that the spatial frequen-
cies that enter the Fourier transform in Eq. (7.5) are ®f1,2 ≜ 𝑘 r̂1,2. As
r̂1 and r̂2 are unit-vectors, the following holds: |®f1 − ®f2 | ≤ 2𝑘 . That
is, spectral components with frequencies greater than 4𝜋

𝜆 do not

give rise to propagating energy. This is known as the evanescent
waves phenomenon [Mandel and Wolf 1995].

The above Eq. (7.6) is our sourcing equation for natural spherical
light sources and we briefly examine its behaviour now. We can
see that spatial coherence indeed behaves as an Airy disk and the
spatial coherence area increases with distance from the source (due
to the implicit 1

𝑟 factor admitted by r̂ = ®r/𝑟 in the Bessel function),
confirming our findings in Subsection 5.2.1. The induced spectral
density at a point is then simply the limit

𝓈(®r, 𝜔) = lim
®r2→®r

W (®r, ®r2, 𝜔) ∝ Λ(𝜔)
𝑟2 (7.7)

and indeed, we can confirm that the spectral density, and in-turn
the intensity, of the sourced radiation decays as 1

𝑟 2 , as desired and
expected. The argument of the Bessel function can generally be large,
even in the far-field where |®r2 − ®r1 | ≪ 𝑟1,2, due to the wavenumber
𝑘 being large in the visible spectrum. For large arguments the Bessel
function admits the asymptotic form [Abramowitz and Stegun 1965]:

J3
2
(𝑥) ∼ −

√︂
2
𝑥𝜋

cos𝑥 + O
(
𝑥−

3
2
)

(7.8)

Substituting the above expression into the sourcing equation, Eq. (7.6),
we get

W (®r1, ®r2, 𝜔) ∝ Λ(𝜔) cos
[
𝜌𝑘 |r̂1 − r̂2 |

]
𝑟1𝑟2 |r̂1 − r̂2 |2

(7.9)

which portrays the oscillatory behaviour of the cross-spectral den-
sity. In addition, the first zero is at about |r̂1 − r̂2 | ≈ 𝑏0

𝑘𝜌 , where
𝑏0 ≈ 4.49340 is the first zero of the Bessel function of the first kind
of order 3

2 [Abramowitz and Stegun 1965]. This expression is also
consistent with the expression for the first zero that was found in
Subsection 5.2.1 (with the only difference being due to the order of
the Bessel function).

The relation between the propagated field’s cross-spectral density
and its Fourier transform is a well-known result in Fourier optics
[Mandel and Wolf 1995]. We build upon that by deriving analytic
expressions for the cross-spectral density of light sourced from
a natural source that is assumed to be composed of very many
independent radiators. Eq. (7.6) is exact, in-practice, under very
natural assumptions (𝑟1,2 are large with respect to the characteristic
size of the source and the distance between the points of interest)
and for spherical light sources that conform to the described model.
Some other geometries, most notably any geometry that can be
approximated as a simple polytope, also admit exact closed-form
expressions (see Appendix A).

Gaussian Schell-model radiation. We now briefly discuss sourcing
from a coherent source, like a laser. We assume a planar circular
source, denoted Σ, of radius 𝜌 , located on the 𝑥𝑦-plane and centred
around the origin. The source radiates at a tight beam around the
+ẑ direction, and with a Gaussian distribution across the source of
both its spatial coherence as well as the radiating power spectral
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density, i.e.

Λ
(
𝜌 ′, 𝜔

)
= Λ0 (𝜔)𝑒

− 𝜌′2
2𝜎2

𝑠 (7.10)

W ′ (®r1, ®r2, 𝜔) =
√︁
Λ( |®r1 |, 𝜔)

√︁
Λ( |®r2 |, 𝜔)𝑒

− |®r1−®r2 |2
2𝜎2

𝑐 (7.11)

on the source, withΛ0 being the power spectral density at the centre,
𝜎𝑠 the standard deviation of distribution of the radiating power
across the source and 𝜎𝑐 the spatial coherence standard deviation.
Such sources are known as Gaussian Schell-model sources [Wolf
2007] and have been widely used in theoretical study due to their
very simple and convenient analytic form. In practice, it holds that
the size of the source is large compared to the standard deviations
of the power spectral density, i.e. 𝑎 ≫ 𝜎𝑠 . Plugging the expressions
above into the scalar propagation equation (Eq. (5.61)), simplifying
using the assumptions above and considering the limit 𝜎𝑐 → ∞, i.e.
assuming a fully coherent source (a perfect laser), results in [Wolf
2007]

W (®r1, ®r2, 𝜔) ≈
(
2𝑘𝜎2

𝑠

)2
Λ0 (𝜔)𝑒−2(𝑘𝜎𝑠𝜃 )2

𝑒𝑖𝑘 (𝑟1−𝑟2) (7.12)

where the assumption is that 𝜃 ≈ 𝜃1 ≈ 𝜃2. It is immediately evident
that such a coherent source radiates in a very tight beam, roughly
up to |𝜃 | ∼ 1

𝑘𝜎𝑠
.

7.2 Diffraction of Electromagnetic Waves
In the previous subsection we considered the cross-spectral density
of light emitted from an incoherent light source. We now study
the diffraction of the sourced cross-spectral density by an aper-
ture, using the Smythe’s diffraction formulae for monochromatic
electromagnetic waves that were derived in Subsection 6.2.
As before, we assume that Σ ⊂ {𝑧 = 0} is an aperture with nor-

mal ẑ. A wave ensemble is incident to the aperture, diffracts and
propagates. Let {®E(®r, 𝜔)𝑒−𝑖𝜔𝑡 } be a decomposition of that wave
ensemble into a collection of monochromatic wavelets, each a (vec-
tor) electric field treated as stationary, at least in the wide sense,
stochastic process. To study propagation, we propagate the individ-
ual coherent-modes (the monochromatic wavelets), and recombine
the beam. This has been done implicitly so far, and we now do so
explicitly. The electric field of any such monochromatic wavelet
can be decomposed into its mutually-orthogonal transverse compo-
nents under some some orthonormal basis. Assume that the incident
electric field decomposes under some given basis {ê′1, ê′2}, and the
incident field’s cross-spectral density matrix is denote as 𝒲 ′. It is
given that𝒲 ′ is known on the aperture. Likewise, the orthonormal
basis under which the propagated light is decomposed is assumed
to be {ê1, ê2} and we are interested in deriving an expression for the
cross-spectral density between a couple of points ®r1, ®r2 (with 𝑧 > 0),
i.e.𝒲 (®r1, ®r2, 𝜔), of the propagated light that has diffracted through
the aperture. The Fresnel-Fraunhofer region assumptions is retained
as well: We assume that the points are far from the aperture, with
respect to the distance between each other, the characteristic size
of the aperture and the wavelength, and denote ®r ≈ ®r1 ≈ ®r2. This
implies that ®r · ê𝑗 = 0.

The cross-spectral density between the points ®r1, ®r2 can bewritten
as the ensemble average over the same-frequency wavelets (see

Eq. (5.23)), and each such constituent ®E diffracts and propagates in
accordance to Smythe’s diffractions formula (Eq. (6.23)) or its far-
field counterpart (Eq. (6.26)). Therefore, an elementW𝑥𝑦 (indexed
by 𝑥,𝑦 ∈ {1, 2}) of the cross-spectral density matrix (Eq. (6.15)) can
be written as

W𝑥𝑦 (®r1, ®r2, 𝜔) =
〈[
ê𝑥 · ®E(®r1)

] [
ê𝑦 · ®E(®r2)

]★〉
𝜔

=
𝑘2𝑒𝑖𝑘 (𝑟1−𝑟2)

4𝜋2𝑟1𝑟2

〈[
ê𝑥 ·

(
r̂1 ×

∫
Σ

d2®r′⊥
(
ẑ × ®E(®r′⊥) )

𝑒−𝑖𝑘 r̂1 ·®r′⊥
)]

×
[
ê𝑦 ·

(
r̂2 ×

∫
Σ

d2®r′⊥
(
ẑ × ®E(®r′⊥) )

𝑒−𝑖𝑘 r̂2 ·®r′⊥
)]★〉

𝜔

(7.13)

where we applied the far-field Smythe’s diffraction formula to each
of the field components. And, as usual, 𝑟 𝑗 = |®r𝑗 | and r̂𝑗 = ®r𝑗

/
𝑟 𝑗 .

To bring out the cross-spectral density on the aperture, 𝒲 ′, in the
expression above, we decompose the electric field into its (incident)
transverse components, viz. ®E = ê′1𝐸1 + ê′2𝐸2. Then, the vector
expressions, inside the ensemble average, are rewritten as follows

ê𝑗 ·
[
r̂𝑙 ×

(
ẑ × ®E

)]
= ê𝑗 ·

[
ẑ
(
r̂𝑙 · ®E

)
− (r̂𝑙 · ẑ)®E

]
=

(
ê𝑗 · ẑ

) (
r̂𝑙 · ®E

)
− (r̂𝑙 · ẑ)

(
ê𝑗 · ®E

)
=

(
ê𝑗 · ẑ

)
r̂𝑙 ·

(®e′1𝐸1 + ®e′2𝐸2
) − (r̂𝑙 · ẑ)ê𝑗 ·

(®e′1𝐸1 + ®e′2𝐸2
)

(7.14)
where we applied the triple product vector identities (Eqs. (1.10)
and (1.11)). Denote the common factors

𝒽𝑗 𝜉,𝜁 =
(
ê𝑗 · ẑ

) (
r̂𝜉 · ê′𝜁

)
−

(
r̂𝜉 · ẑ

) (
ê𝑗 · ê′𝜁

)
=

(
ê𝑗 × r̂𝜉

)
·
(
ẑ × ê′𝜁

)
(7.15)

with 𝑗, 𝜉, 𝜁 ∈ {1, 2} being indices. Then, by substituting Eqs. (7.14)
and (7.15) into Eq. (7.13), formally interchanging the orders of ensem-
ble averaging and integration and applying a series of elementary
algebraic manipulations, the propagated cross-spectral density fi-
nally becomes

𝒲 (®r1, ®r2, 𝜔) = 1
𝜆2
𝑒𝑖𝑘 (𝑟1−𝑟2)

𝑟1𝑟2
𝑯 1𝚿𝑯𝑇

2 (7.16)

with 𝑯 being the following shorthand

𝑯 𝜉 ≜

[
𝒽1 𝜉,1 𝒽1 𝜉,2
𝒽2 𝜉,1 𝒽2 𝜉,2

]
(7.17)

and with the matrix 𝚿 being the central quantity of interest: the
(double) two-dimensional Fourier transform of the cross-spectral
density on the aperture, viz.

𝚿 ≜

∫
Σ

d2®r′⊥
∫
Σ

d2®r′′⊥𝒲 ′ (®r′⊥, ®r′′⊥, 𝜔 )
𝑒−𝑖𝑘 (r̂1 ·®r′⊥−r̂2 ·®r′′⊥)

= ℱ
{
1Σ

(®r′⊥)
ℱ

{
1Σ

(®r′′⊥)
𝒲 ′ (®r′⊥, ®r′′⊥, 𝜔 )} (−𝑘 r̂2)

} (𝑘 r̂1) (7.18)
The 1Σ denotes the characteristic function of the aperture and the
Fourier transforms are with respect to the variables ®r′⊥ and ®r′′⊥.
We briefly verify that the propagated cross-spectral density ma-

trix,𝒲 , is a polarization matrix when evaluated at a single point.
Indeed, when ®r1 = ®r2, it is easy to see that 𝑯 1 = 𝑯 2 and thus
(𝑯 1𝚿𝑯𝑇

2 )† = 𝑯 1Ψ†𝑯𝑇
2 . As 𝚿 = 𝚿

†, due to 𝚿 being the Fourier
transform of a Hermitian matrix, we deduce that 𝒲 (®r, ®r, 𝜔) is
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Hermitian. Further, 𝚿 is positive semi-definite, thus we can write
𝚿 = 𝑨𝑨† for some matrix 𝑨 and then 𝑯 1𝚿𝑯𝑇

2 = (𝑯 1𝑨) (𝑯 1𝑨)†,
therefore𝒲 (®r, ®r, 𝜔) ⪰ 0. We conclude that if𝒲 ′(®r, ®r, 𝜔) is a polar-
ization matrix, then𝒲 (®r, ®r, 𝜔) is a polarization matrix.
Eq. (7.16) (together with Eqs. (7.15), (7.17) and (7.18)) formalises

the diffraction and propagation of the cross-spectral density matrix
of light of any state of coherence, polarization and spectrum, by
an arbitrary aperture, under the context of full electromagnetism.
To our knowledge, this expression has not been previously derived,
either in optics or computer graphics literature. A quick comparison
with the scalar formalism (Subsection 5.3.1) reveals that Eq. (7.16) is
equivalent to its scalar counterpart, Eq. (5.61) (applied per transverse
component), only at normal incidence and when r̂ ≈ ẑ, in which
case indeed 𝑯 𝜉 ≡ 𝑰 . However, away from normal incidence and
exitance, the vectorized theory provides a more accurate formal-
ism. Another advantage is that the polarization state of the wave
ensemble becomes a first-class citizen under a vectorized formalism,
which is important as polarization plays a major role in light-matter
interactions.

7.3 Superposition of Light of any State of Coherence
Consider the superposition of light that arrives at an area from a
couple of apertures or sources, Σ1 and Σ2, such that Σ1 ∩ Σ2 = ∅.
We assume that 𝒲 ′—the cross-spectral density on Σ = Σ1 ∪ Σ2—is
known. The cross-spectral density𝒲 of light that propagated away
from Σ and can be computed using the tools we have developed so
far, namely one of the propagation equations, Eqs. (5.61) and (7.16).
Let ℑ be a linear integration operator that serves as a shorthand for
the propagation of the cross-spectral density, e.g.,

ℑ𝜉,𝜁
{
𝒲 ′} =

∫
Σ𝜉

d2®s1

∫
Σ𝜁

d2®s2 𝒲 ′ (®s′1, ®s′2, 𝜔 )
𝑒−𝑖𝑘 (r̂1 ·®s′1−r̂2 ·®s′2)

(7.19)

or any other diffraction integral, e.g., Eq. (6.26). Then, the propagated
cross-spectral density function can be succinctly written as the
superposition

𝒲 (®r1, ®r2, 𝜔) ∝
(
ℑ1,1 + ℑ2,2 + ℑ1,2 + ℑ2,1

) {
𝒲 ′}

=
(
ℑ1,1 + ℑ2,2 + 2 Reℑ1,2

) {
𝒲 ′} (7.20)

with constants emitted both for brevity and as they depend on
the exact formalism of choice. The equality on the second line
holds because𝒲 ′ is a Hilbert–Schmidt kernel, thus𝒲 ′(®s1, ®s2, 𝜔) =
𝒲 ′(®s2, ®s1, 𝜔)★ and ℑ1,2 = ℑ★

2,1.

Incoherent super-position. When the contributions from Σ1 and
Σ2 are mutually-independent, e.g. one is a natural source, then the
double-integral over Σ1 and Σ2, ℑ1,2{𝒲 ′}, is essentially zero. This
holds, in general, when the apertures (or sources) are far from each
other, with respect to the distance over which the light remains
spatially coherent, i.e. |tr𝒲 ′(®s1, ®s2, 𝜔) | ≈ 0 when ®s1 ∈ Σ1, ®s2 ∈ Σ2
(or vice versa). Then,

𝒲 (®r1, ®r2, 𝜔) ∝
(
ℑ1,1 + ℑ2,2

) {
𝒲 ′} (7.21)

We conclude that the cross-spectral density of the superposition
of wave ensembles, sourced (or propagated) from different, inde-
pendent sources (or apertures) is simply the superposition of each

ensemble’s cross-spectral density (computed using the formulae in
Subsections 7.1 and 7.2).
The formulations above are trivially extended to any finite col-

lection of disjoint apertures or sources, {Σ1, Σ2, . . . , Σ𝑛}. Our super-
position of cross-spectral densities formulae for coherent and inco-
herent super-positions, respectively, are then:

𝒲 (®r1, ®r2, 𝜔) ∝ ©«
𝑛∑︁
𝑗=1

ℑ𝑗, 𝑗 + 2 Re
𝑛∑︁

𝑚=𝑗+1
ℑ𝑗,𝑚

ª®¬
{
𝒲 ′} (7.22)

𝒲 (®r1, ®r2, 𝜔) ∝
𝑛∑︁
𝑗=1

ℑ𝑗, 𝑗
{
𝒲 ′} (7.23)

7.4 Measurement
Measurement is an operation that analyses the wave ensemble to
deduce its observed intensity. It is assumed that observation is done
over a period of time long compared to the temporal coherence of the
measured radiation, see Subsection 7.7 for additional discussion. In
space-frequency formulation of optical coherence, we use Eq. (5.24)
to compute the intensity of the wave ensemble characterized by the
cross-spectral density above, that is

𝐼 (®r) = 1
𝜋

∫ ∞

0
d𝜔W (®r, ®r, 𝜔) (7.24)

or, for cross-spectral density expressed in matrix form:

𝐼 (®r) = 1
𝜋

∫ ∞

0
d𝜔 tr𝒲 (®r, ®r, 𝜔) (7.25)

In general, however, it is the spectral response of an imaging
system, with respect to the spectral stimulus, that interests us. Com-
putation of that quantity is accomplished by integrating the above
over the support of some response function (e.g. the XYZ colour
matching functions), and we do not expect to achieve a closed-form
expression in that case. However, as the spectrumwill generally be a
well-behaved function, we resign ourselves to numerical integration
over the visible spectrum. Note that typically during rendering we
only measure intensity once per image element (or pixel).

Special types of spectra. We briefly discuss a few spectral densities,
Λ, that arise in practical applications.

Emission from low-pressure gas discharge lamps (e.g., fluorescent
lamps and neon lighting) admits a spectral density that is readily
approximated by a Gaussian [Hollas 2004]:

Λlp (𝜔) ≜
√︂

ln 2
𝜋

2
Δ𝜔

𝑒−4 ln 2( 𝜔−�̄�
Δ𝜔 )2

(7.26)

where �̄� is the mean and Δ𝜔 is the standard deviation of the Gauss-
ian spectrum, also known as half-power bandwidth. When Δ𝜔 is
very small the Gaussian spectrum is also a very good approximation
for (single-mode) laser radiation.
Another useful spectrum is the Lorentzian spectrum, which ap-

proximates the spectra of high-pressure gas discharge lamps (e.g.,
some automotive lamps and powerful outdoor lighting lamps) [Hol-
las 2004]:

Λhp (𝜔) ≜
2

𝜋Δ𝜔

1

1 +
(
2𝜔−�̄�

Δ𝜔

)2 (7.27)
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with �̄� being the mean and Δ𝜔 the half-power bandwidth, as before.
Finally, a body that absorbs all incident radiant energy and re-

mains at thermal equilibrium is known as a blackbody (e.g., incan-
descent bulbs and the sun). Such a radiator admits a spectral density
described by Planck’s Law:

Λbb (𝜔) ≜
2ℎ
𝑐2

𝜔3

𝑒
ℎ𝜔
𝑘B𝑇 − 1

(7.28)

where𝑇 is the temperature (in Kelvin), 𝑘B is the Boltzmann constant
and ℎ is the Planck constant.

7.5 Fresnel Equations
While we avoid discussion and formalisation of light-matter interac-
tion, we briefly mention the well-known Fresnel equations, which
relate the amplitudes of an incident field to the reflected and re-
fracted fields at an interface between two materials. Let 𝑧 = 0 be
the flat interface between a pair of media. Let 𝜇1, 𝜇2 be the magnetic
permeabilities and 𝜖1, 𝜖2 be the permittivities of the 𝑧 > 0 medium
and the 𝑧 < 0 medium, respectively. Those values may be complex.
Then, 𝜂1,2 = 𝑐

√
𝜇1,2𝜖1,2 denote the (possibly complex) indices of

refraction of the media. Assume that a wave ensemble is incident
upon the interface from the 𝑧 > 0 half-space. As before, we consider
a constituent ®E(®r, 𝜔) = ®E0𝑒𝑖 (

®k·®r−𝜔𝑡 ) of the decomposition of the
incident ensemble into a collection of monochromatic wavelets. ®k is
the wavevector of the incident field, and two solutions to Maxwell’s
equation arise at the interface: a reflected field and a refracted field.
The matching conditions implied by the Maxwell equations readily
allow us to derive the famous Snell’s law of refraction [Zangwill
2013]. Snell’s law relates the incident angle 𝜃1 that the wavevector
®k makes with the interface, to the angle 𝜃2 between the refracted
wave’s wavevector, denoted ®k𝑇 , and the interface:

𝜂1 sin𝜃1 = 𝜂2 sin𝜃2 (7.29)
The law of reflection states that the angle of reflection is equal to the
angle of incidence, thus ®k𝑅 = ®k−2(®k · ẑ)ẑ is the reflected wavevector.
The three wavevectors ®k, ®k𝑅, ®k𝑇 are co-planar.

The polarization of the incident wave plays a role in its reflec-
tion and refraction. It is the common convention to consider the
decomposition of the incident wave into an s-polarized component
(where the field is strictly perpendicular to the plane of incidence),
and a p-polarized component (where the field is strictly parallel to
the plane of incidence). That is, if {ê𝑠 , ê𝑝 } is the orthogonal basis,
then ê𝑠 · ẑ = 0 and ê𝑝 · (®k × ẑ) = 0. Denoting 𝑟𝑠,𝑝 and 𝑡𝑠,𝑝 as the
(possibly complex) amplitude ratios of the reflected and transmitted,
respectively, s- and p-polarized waves, Fresnel equations become
[Zangwill 2013]:

𝑟𝑠 =
𝑍2 cos𝜃1 − 𝑍1 cos𝜃2
𝑍2 cos𝜃1 + 𝑍1 cos𝜃2

𝑟𝑝 =
𝑍1 cos𝜃1 − 𝑍2 cos𝜃2
𝑍1 cos𝜃1 + 𝑍2 cos𝜃2

(7.30)

𝑡𝑠 =
2𝑍2 cos𝜃1

𝑍2 cos𝜃1 + 𝑍1 cos𝜃2
𝑡𝑝 =

2𝑍2 cos𝜃1
𝑍1 cos𝜃1 + 𝑍2 cos𝜃2

(7.31)

where𝑍1,2 = 𝜂1,2
𝑐𝜖1,2

are the intrinsic impedances. For non-magneticme-
dia, i.e. 𝜇1 = 𝜇2 = 1 (or 𝜇0 under SI-units, where 𝜇0 is the free-space
permeability), 𝑍1,2 = 𝑐

𝜂1,2
and thus by writing 𝑍2

𝑍1
= 𝜂1

𝜂2
, Eqs. (7.30)

and (7.31) can be rewritten in terms of the indices of refraction 𝜂1,2.

We are now ready to derive an expression for the cross-spectral
density matrix, 𝒲 , of light that was reflected or refracted at the
interface between two media. Assume that𝒲 ′ is the (known) cross-
spectral density matrix of the incident light. Both matrices are for-
mulated with respect to a decomposition into s- and p-polarized
fields. Let 𝐸𝑠,𝑝 = ®E0 · 𝑒𝑠,𝑝 be the amplitudes of the s- and p-polarized
components of the incident field, and likewise let

𝐸
(𝑅)
𝑠 = 𝑟𝑠𝐸𝑠 𝐸

(𝑅)
𝑝 = 𝑟𝑝𝐸𝑝 𝐸

(𝑇 )
𝑠 = 𝑡𝑠𝐸𝑠 𝐸

(𝑇 )
𝑝 = 𝑡𝑝𝐸𝑝 (7.32)

be the amplitudes of the respective components of the reflected and
refracted fields. Then, an element of the cross-spectral density of
the reflected field is

𝒲 (𝑅)
𝜉,𝜁

(®r1, ®r2, 𝜔) =
〈(
𝐸
(𝑅)
𝜉
𝑒𝑖 (®k𝑅 ·®r1−𝜔𝑡 )

) (
𝐸
(𝑅)
𝜁

𝑒𝑖 (®k𝑅 ·®r2−𝜔𝑡 )
)★〉

𝜔

=
〈
𝑟𝜉𝐸𝜉𝑟

★
𝜁 𝐸

★
𝜁

〉
𝜔
= 𝑟𝜉𝑟

★
𝜁 𝒲 ′

𝜉,𝜁 (®r1, ®r2, 𝜔) (7.33)

where 𝜉, 𝜁 ∈ {𝑠, 𝑝} and are also used to index the cross-spectral den-
sity matrices, and ®r1,2 are points on the surface. The cross-spectral
density of the refracted field is deduced analogously, and we con-
clude:

𝒲 (𝑅) =
[
𝑟𝑠

𝑟𝑝

]
·𝒲 ′ ·

[
𝑟𝑠

𝑟𝑝

]†
(7.34)

𝒲 (𝑇 ) =
[
𝑡𝑠

𝑡𝑝

]
·𝒲 ′ ·

[
𝑡𝑠

𝑡𝑝

]†
(7.35)

It is easy to verify that the resulting cross-spectral density matrices
are indeed polarization matrices.

The Church polarization factor. The Fresnel equations above are
derived elementary from Maxwell divergence equations, Eq. (4.1)
(as a side note, the relations described by the Fresnel equations are
purely kinematic, in the sense that the dynamic Maxwell curl equa-
tions, Eq. (4.2), are neither used nor needed), however they assume a
perfectly smooth surface. Of practical interest are similar equations
that take residual surface roughness and surface wave excitation (e.g,
surface-plasmon polaritons) into account. Such relations appear to
have been first derived in the modern radar scattering literature by
Ruck [1970] and then introduced into applied optics and surface scat-
tering by Church et al. [1977] (also see Stover [2012] for additional
discussion). We use Church’s notation, and denote the following
relations as the Church polarization factor Q. This is the same factor
that was borrowed both by the Rayleigh-Rice small perturbation
surface theory and the Harvey-Shack generalized scattering theory
[Krywonos 2006].
Let 𝜃𝑖 and 𝜃𝑠 be the angles of incidence and reflection, and let

𝜙𝑠 be the azimuthal angle of scattering (the angle between the
projections of the incident and reflected wave-vectors onto the
surface plane). Unlike the Fresnel equations which mandate 𝜃𝑖 = 𝜃𝑠
and 𝜙𝑠 , we now choose the reflected direction at will. Denote the
relative permittivity between the surfaces as 𝜖 = 𝜖2/𝜖1. Then, the
four expressions that give rise to the Church polarization factor are

𝑞𝑠𝑠 ≜
(𝜖 − 1) cos𝜙𝑠(

cos𝜃𝑖 +
√︁
𝜖 − sin2 𝜃𝑖

) (
cos𝜃𝑠 +

√︁
𝜖 − sin2 𝜃𝑠

) (7.36)

𝑞𝑠𝑝 ≜
(𝜖 − 1)

√︁
𝜖 − sin2 𝜃𝑠 sin𝜙𝑠(

cos𝜃𝑖 +
√︁
𝜖 − sin2 𝜃𝑖

) (
𝜖 cos𝜃𝑠 +

√︁
𝜖 − sin2 𝜃𝑠

) (7.37)
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𝑞𝑝𝑠 ≜
(𝜖 − 1)

√︁
𝜖 − sin2 𝜃𝑖 sin𝜙𝑠(

𝜖 cos𝜃𝑖 +
√︁
𝜖 − sin2 𝜃𝑖

) (
cos𝜃𝑠 +

√︁
𝜖 − sin2 𝜃𝑠

) (7.38)

𝑞𝑝𝑝 ≜
(𝜖 − 1)

(√︁
𝜖 − sin2 𝜃𝑠

√︁
𝜖 − sin2 𝜃𝑖 cos𝜙𝑠 − 𝜖 sin𝜃𝑖 sin𝜃𝑠

)(
𝜖 cos𝜃𝑖 +

√︁
𝜖 − sin2 𝜃𝑖

) (
𝜖 cos𝜃𝑠 +

√︁
𝜖 − sin2 𝜃𝑠

)
(7.39)

where the first subscript denotes the polarization of the incident
wave and the second subscript the polarization of the scattered
wave. Note that when the reflection is in the plane of incidence,
i.e. 𝜙𝑠 = 0, the cross-polarization terms vanish, viz. 𝑞𝑠𝑝 = 𝑞𝑝𝑠 = 0.
Likewise, when the reflection is specular, i.e. 𝜙𝑠 = 0 and 𝜃𝑖 = 𝜃𝑠 as
mandated by the law of reflection, the expressions reduce to the
Fresnel equations, that is 𝑞𝑠𝑠 = 𝑟𝑠 and 𝑞𝑝𝑝 = 𝑟𝑝 . The total reflected
energy is then the Church polarization factor 𝑄 and can be written
as 𝑄 =

∑
𝑥𝑦 |𝑞𝑥𝑦 | 2. We define the following matrix, which we call

the Church reflection matrix:

𝑸 ≜

[
𝑞𝑠𝑠 𝑞𝑝𝑠
𝑞𝑠𝑝 𝑞𝑝𝑝

]
(7.40)

which can be used in-place of the reflection matrix in Eq. (7.34), viz.

𝒲 (𝑅) = 𝑸𝒲 ′ 𝑸† (7.41)
to describe the reflected cross-spectral density matrix in an arbitrary
direction.

7.6 Space-Time Formulation
In Subsection 5.1.2 we discussed conditions for the separability of
the spatial and temporal coherence. We deduced that the mutual
coherence can be written as a product of spatial and temporal co-
herence functions if and only if the light’s spectrum is identical in
the (spatial and temporal) region of interest. This condition only ap-
plies in the immediate vicinity of a light source that radiates with a
constant spectrum. For an incoherent light source the cross-spectral
density is given by Eq. (7.1), and indeed the spatial coherence term is
separate from the spectral term. By theWiener–Khinchin Theorem—
Theorem 3.1—the power spectral density is the Fourier transform
pair of the temporal coherence function, i.e.

Γ̃(𝜏) = ℱ-1{Λ(𝜔)} (7.42)
Then, the cross-spectral density relates to the mutual coherence via
Eq. (5.30). Applying the above yields the expression for the sourcing
of the mutual coherence from a natural (i.e. incoherent) light source:

Γ(®r1, ®r2, 𝜏) = 𝑒−
|®r1−®r2 |2

�̄�2 ℱ-1{Λ(𝜔)}(𝜏) (7.43)

with 𝜆 being the mean wavelength, as before. Once propagation-
induced spectral changes arise the mutual coherence can be recov-
ered from the cross-spectral density via an inverse Fourier transform.
We do not employ the mutual coherence in our formalisms, and
therefore do not investigate further.

7.7 Higher-order Statistics
Our discussion and formulations have been centred around the
second-order statistics of a wave ensemble—i.e. the mutual coher-
ence or cross-spectral density functions. While the wave fields are

typically not Gaussian and higher-order statistics would be required
to reconstruct the ensemble constituents, we are ultimately only in-
terested in accurate representation of the intensity of the measured
(observed) field. For ergodic process (discussed in Subsection 3.0.1)
the infinite-time average (Eq. (3.2)) equals to the ensemble aver-
age. Integrating over infinite time can be physically interpreted
as observing light over very long periods. Specifically, very long
with respect to the coherence time of the measured wave ensemble,
and this is typically the case when observing light sourced from
a natural source and imaging using a camera or the eye. When
integrating over periods very long compared to the coherence time,
many independent fluctuations contribute to the final intensity, and
thus, by the central limit theorem, the statistics of the intensity are
(point-wise) asymptotically Gaussian.

However, when dealing with quasi-monochromatic radiation that
may exhibit very long coherence times, or when rendering images
with ultra-low exposure time, the assumption that we average over
infinite time no longer holds, and higher-order statistics might be
required. Those higher-order statistics are more difficult to work
with, and for this body-of-work, we simply assume that the second-
order functions provide sufficient information for our applications.
A more comprehensive discussion of higher-order coherence is
presented by Goodman [2015].

8 GENERIC LIGHT PROPAGATORS
In this section we use the rendering equations developed in Section 7
to formalise physically-accurate light transport operators. Those
are general-purpose operators, we make no spectral assumption
or geometric requirements, except assuming Fresnel-Fraunhofer
region, and, for simplicity, we only formalise for spherical sources.
However, as mentioned in Section 7 and shown in Appendix A,
other shapes will produce useful closed-form expressions as well.

8.1 The Spectral-Density Transport Equation
Consider the light transport equation (LTE) [Pharr et al. 2016] that
governs the propagation and (equilibrium) distribution of radiance
in a rendered scene:

𝐿𝑜 (®x,Ω𝑜 , 𝜔, 𝑡) = 𝐿𝑒 (®x,Ω𝑜 , 𝜔, 𝑡)

+
∫
𝒮2

d2Ω′ 𝑓𝑟
(®x,Ω′,Ω𝑜 , 𝜔, 𝑡

)
𝐿𝑖

(®x,Ω′, 𝜔, 𝑡
) ��Ω′ · n̂

�� (8.1)

where 𝐿𝑜 is the exitant spectral radiance, 𝐿𝑒 is the emitted radiance,
𝐿𝑖 is the incident spectral radiance, 𝒮2 is the unit sphere centred
at the point of interest ®x, 𝜔 is the radiation angular frequency, 𝑡 is
time, 𝑓𝑟 is the bidirectional reflectance distribution function (BRDF),
Ω ≡ (𝜃, 𝜙) is the spherical angle with d2Ω = sin𝜃d𝜃d𝜙 being
the differential solid angle, and Ω𝑜 ,Ω

′ are the exitant and incident
angles, respectively. The LTE written above ignores volumetric
scattering and participating media, however it can be generalized to
account for those phenomena as well. Expressions similar to the LTE
that govern the transport of the coherence functions, specifically
the cross-spectral density, can also be formulated, and that is the
goal of this section. We begin with a short discussion of radiometry.

Radiometry. The basic quantity of traditional radiometry is the
radiance, defined as 𝐿 = 𝜕2Φ

𝜕Ω𝜕𝐴 cos𝜃 (Φ is radiant flux, Ω is the solid
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angle subtended by the collector, 𝐴 is the cross-sectional area of the
source and cos𝜃 is the obliquity factor), and the LTE above deals
exclusively with quantities of radiance. Under “geometric optics”,
radiance is conserved along rays in an optical system (in absence
of transmission losses), however such optics are fundamentally
paradoxical: as discussed previously, incoherent radiation does not
propagate (into the far-field) and the concept of radiance is inconsis-
tent with Maxwellian Electromagnetism [Wolf 1978]. A generalized
radiance was introduced by Walther [1968] (and then discussed by
a large body of work), which is a propagated coherence function.
As we have rigorously shown, propagation of coherence functions
is a diffraction problem, and we will now show that we can con-
tinue to use units of radiance to describe partially-coherent light
propagation.
The cross-spectral density is the ensemble average of the equal-

frequency constituents of the coherent-modes decomposition of a
wave ensemble (as discussed in Subsection 5.1.1):

W (®r1, ®r2, 𝜔) =
〈
𝑢 (®r1, 𝜔)𝑢 (®r2, 𝜔)★

〉
𝜔 (8.2)

where 𝑢 is a scalar monochromatic wavelet. The expression that
enters into the ensemble average above, 𝑢 (®r1, 𝜔)𝑢 (®r2, 𝜔)★, is the
mutual intensity of 𝑢 between points ®r1 and ®r2, i.e. the equal-time
mutual coherence (see Subsection 5.0.2).𝑢 has units of field strength,
therefore the mutual intensity describes directional power flow
(analogously to the Poynting vector, Eq. (4.15)). When dividing by
the intrinsic impedance 𝑍 =

√︁
𝜇/𝜖 (encountered in Subsection 7.5),

the result is the (mutual) instantaneous power density 𝑃 that flows
through the medium [Goodman 2015], viz.

𝑃 =
𝑢 (®r1, 𝜔)𝑢 (®r2, 𝜔)★

2𝑍 (8.3)

𝑃 has units of spectral power per area, erg
m2 s µm or W

m2 µm (in SI-units),
i.e. spectral irradiance. Therefore, the cross-spectral density normal-
ized by the intrinsic impedance, W/(2𝑍 ) , also has units of spectral
irradiance, and 1

2𝑍
𝜕2 W

𝜕Ω𝜕𝐴 cos𝜃 has units of spectral radiance (power
per solid angle per projected source area). The normalization by 2𝑍
is typically ignored.

Our transport equation. While the LTE (Eq. (8.1)) deals with val-
ues, we propagate functions. Hence, our formalism is described in
terms of operators that formalise physical interactions by acting
upon and generating cross-spectral density functions. As the cross-
spectral density is a function of two spatial points, we propagate
a cross-spectral density function not point-to-point, but between
primary or secondary (aperture, surface patch, etc.) sources or an
imaging device, each of which occupies a small spatial area, 𝛿®x ⊂ R3.
Typically the only constraint is the Fresnel-Fraunhofer region as-
sumption, i.e. that the characteristic size of those patches 𝛿®x is large
compared to wavelength and small compared to the propagation
distance between the patches. Otherwise, our transport equation
remains very similar to the classical LTE. Following the dimensional
analysis above and using the relation between the differential sur-
face area and differential solid angle, viz. d𝐴𝑟 = 𝑟2 dΩ, in order to
work with units of radiance we define the radiance cross-spectral

density (RCSD):

ℒ (®r1, ®r2, 𝜔) ≜ 𝑟2 𝜕𝒲 (®r1, ®r2, 𝜔)
𝜕𝐴𝑠 cos𝜃 (8.4)

i.e. the cross-spectral density per solid angle per projected source
area. Changes in medium impedance are accounted for by the Fres-
nel equations (discussed in Subsection 7.5), which modulate the
power carried by an electromagnetic wave when light propagates
from one medium to another.
We are now ready to formulate the spectral-density transport

equation (SDTE):

ℒ(𝑜)
®x→𝛿®r = ℒ(𝑒)

®x→𝛿®r +
∫
𝒮2

d2Ω′ ��Ω′ · n̂
��𝒟𝛿®x→𝛿®r

{
ℒ(𝑖)
®r′→𝛿®x

}
(8.5)

where the exitant, emitted and incident radiances, 𝐿, in the LTE
(Eq. (8.1)) are replaced with their RCSD counterparts. ℒ(𝑖)

®r′→𝛿®x is
the RCSD incident to the point ®x from direction Ω𝑖 and 𝒟𝛿®x→𝛿®r
is a context-dependant diffraction operator that, given an incident
RCSD impinging upon the patch 𝛿®x from direction Ω𝑖 , generates the
diffracted RCSD in direction Ω𝑜 . The time dependence is implicit.
The rest of the section is dedicated to formalising the cross-

spectral density transport operators that are at the core of our
formalism. Note that some of the formulae derived in Section 7
have been implicitly formulated as radiant intensity (power per
solid angle), which is the natural way to formulate diffraction. In
this section we will rewrite those formulae as RCSD.

8.2 Propagation Operators
Definition 8.1 (Incoherent Sourcing Operator). GivenΛ, the emitted

power spectral density, and 𝜌 , the source radius, the incoherent
sourcing operator produces the sourced RCSD, propagating in some
direction Ω (with constants folded into Λ):

𝒮inc{Λ, 𝜌} ≜ 𝑰

√︂
𝜋

𝜌
Λ(𝜔) 𝑒

𝑖𝑘 (𝑟1−𝑟2)

𝑟1𝑟2

J3
2

[
𝜌𝑘 |r̂1 − r̂2 |

]
|r̂1 − r̂2 |

3
2

(8.6)

with 𝜆 being the mean wavelength, 𝑰 the identity matrix.

Note that there is no directional dependence in the function
produced by the incoherent sourcing operator, that is due to the
isotropic nature of the elementary radiators that assemble a natural
light source. We divided by the cross-sectional area of the source
𝜋𝜌2 to produce an RCSD. The off-diagonal elements of the matrix
generated by 𝒮inc are 0: We assume randomly polarized emitted
energy and we can trivially verify that the degree-of-polarization
of this matrix (using Eq. (6.13)) is zero.

Similarly, we also define a sourcing operator for coherent Gauss-
ian Schell-model sources (single-mode lasers).

Definition 8.2 (Coherent Gaussian Schell-Model Beam Sourcing Op-
erator). Given Λ, the emitted power spectral density, and 𝜎𝑠 , the
standard deviation of distribution of the radiating power across the
source, the Gaussian Schell-model sourcing operator is defined as
follows:

𝒮gsm{Λ, 𝜎𝑠 } ≜
[
1 0
0 0

]
2
𝜋𝜌2

(
𝑘𝜎2

𝑠

)2
Λ(𝜔)𝑒−2(𝑘𝜎𝑠𝜃 )2

𝑒𝑖𝑘 (𝑟1−𝑟2) (8.7)
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with 𝜃 being the inclination angle relative to the source, which
is assumed to be a flat disk. The expression above describes fully
linearly polarized radiation.

An important free-space propagation operator is the diffraction
operator:

Definition 8.3 (Diffraction Operator). Let 𝒲 ′ be a RCSD function
of the radiation impinging upon a planar aperture Σ ⊂ R3 with
normal vector n̂. The diffracted and propagated RCSD in direction
Ω𝑜 from the aperture is generated by the diffraction operator :

𝒟
{
𝒲 ′,Ω𝑜 , Σ

}
≜

𝑒𝑖𝑘 (𝑟1−𝑟2)

𝜆2𝐴Σ |r̂ · n̂|
𝑯 1 ℱ2

Σ

{
𝒲 ′}𝑯𝑇

2 (8.8)

with ( |r̂ · n̂|𝐴Σ) being the projected aperture area and

𝑯 𝜉 ≜


(
ê1 × r̂𝜉

)
·
(
n̂ × ê′1

) (
ê1 × r̂𝜉

)
·
(
n̂ × ê′2

)(
ê2 × r̂𝜉

)
·
(
n̂ × ê′1

) (
ê2 × r̂𝜉

)
·
(
n̂ × ê′2

) (8.9)

The transverse basis vectors ê1,2 and ê′1,2 as well as the double
Fourier transform over the aperture are as described in Subsec-
tion 7.2.

The Helmholtz reciprocity of the diffraction operator is discussed
in Appendix B.

Finally, the following operator measures the radiance of the wave
ensemble at a point.

Definition 8.4 (Observation Operator). Let ℒ be the RCSD. The
observed radiance at a point ®r is then

ℒ{ℒ, ®r} ≜ 1
𝜋

∫ ∞

0
d𝜔 trℒ (®r, ®r, 𝜔) (8.10)

8.3 Light-Matter Interaction Operators
We begin with operators that change the polarization of the wave
ensemble. Such operators can be borrowed directly from the Jones
calculus. As before, let {ê1, ê2} be the basis under which an electro-
magnetic wave is decomposed into transverse orthogonal compo-
nents, and let 𝐸𝑥 , 𝐸𝑦 be the transverse amplitudes. Then, the vector
[ 𝐸𝑥 𝐸𝑦 ]𝑇 is known as a Jones vector and light-matter interactions
are modelled via Jones matrices—2 × 2 complex matrices that act
upon Jones vectors.

Definition 8.5 (Jones Calculus Operator). Let 𝑨 be a Jones matrix
representing an optical element. Then, the action of that optical ele-
ment upon a wave ensemble is described via the following operator

𝒥𝑨{ℒ} ≜ 𝑨ℒ𝑨† (8.11)

Note that while typical Jones calculus is generally applicable only
to fully-coherent, full-polarized light propagating in an isotropic
medium, this restriction is void under our formalism. For example,
the matrix

𝑷 linear,𝜗 =

[
cos2 𝜗 cos𝜗 sin𝜗

cos𝜗 sin𝜗 sin2 𝜗

]
(8.12)

describes a linear polarizer (e.g., sunglasses), oriented at an angle
of 𝜗 from the horizontal direction, and correctly acts upon a cross-
spectral density matrix of any state of coherence and polarization.

Another useful example is a polarization rotation matrix, which can
be used to rotate the transverse basis under whichℒ is decomposed:

𝑹𝒐𝒕𝜃 =

[
cos𝜃 sin𝜃
− sin𝜃 cos𝜃

]
(8.13)

Finally, a quarter-wave plate with slow vertical and fast horizontal
axes, which serves to retard the phase of the portion of the wave
ensemble that is polarized in the vertical direction:

𝑾 𝜋
2
=

[
1

𝑒−𝑖
𝜋
2

]
(8.14)

Reflection and refraction operators. The only additional operators
that involve light-matter interaction that we formalize are the simple
reflection and refraction operators using the relations that were dis-
cussed in Subsection 7.5. Note that the Fresnel and Church reflection
and refraction matrices that appear in Eqs. (7.34), (7.35) and (7.41)
are nothing more than Jones matrices, and therefore the following
definitions follow directly from the Jones operator, Definition 8.5.

Definition 8.6 (Fresnel Reflection Operator). Let ℒ be the RCSD
impinging upon an interface between twomedia. Let n̂ be the normal
of the interface and Ω𝑖 the angle of incidence. Then, the reflected
RCSD is

ℛFresnel{ℒ} ≜
[
𝑟𝑠

𝑟𝑝

]
·ℒ ·

[
𝑟𝑠

𝑟𝑝

]†
(8.15)

where 𝑟𝑠,𝑝 are the Fresnel reflection coefficients, and we assume that
the cross-spectral density matrix ℒ is formulated with respect to
decomposition into s- and p-polarized incident waves, as discussed
in Subsection 7.5.

Definition 8.7 (Fresnel Refraction Operator). Under identical con-
text to the previous definition, the refracted RCSD is

𝒯Fresnel{ℒ} ≜
[
𝑡𝑠

𝑡𝑝

]
·ℒ ·

[
𝑡𝑠

𝑡𝑝

]†
(8.16)

where 𝑡𝑠,𝑝 are the Fresnel refraction coefficients. Decomposition
into s- and p-polarized waves is assumed as well.

Definition 8.8 (Church Reflection Operator). As before, the re-
flected RCSD under the Church reflection formulation is

ℛChurch{ℒ} ≜ 𝑸 ℒ𝑸† (8.17)

with𝑸 being the Church reflectionmatrix, Eq. (7.40). Decomposition
into s- and p-polarized waves is assumed.

9 APPLICATIONS
In this section we present one example application.

9.1 Rendering Diffraction on Reflection from a Surface
Consider a surface described explicitly by some height function,
ℎ : R2 → R, where the height deviations are from the mean surface
plane, the 𝑥𝑦-plane. The surface normal is denoted n̂ = ẑ. We denote
points on the mean surface plane as ®x⊥, and the corresponding
surface position is ®x = ®x⊥+ℎ(®x⊥)n̂. Assume that a natural spherical
light source of radius 𝜌 and with emitted power spectral density Λ
is positioned at point ®s. Radiation from the source is incident to a
surface patch 𝛿®x at incidence direction Ω𝑖 (relative to the normal n̂),
and we are interested in measuring the observed radiance of light
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reflecting (or scattering) from the surface patch and arriving at an
imaging device at position ®e.

Applying the SDTE (Eq. (8.5)), we are interested in the quantity

𝐿(®e) = ℒ

{∫
𝒮2

d2Ω′ ��Ω′ · n̂
��𝒟𝛿®x,Ω′→Ω𝑜

{𝒮inc{Λ, 𝜌}}, ®e
}

(9.1)

where Ω𝑜 is the direction of reflection of the surface patch and𝒟

is an abstract surface diffraction operator. Our focus is on deriving
an analytic expression for 𝒟 acting upon the sourced RCSD gen-
erated by 𝒮inc. When the characteristic size of the surface patch is
large compared to the height fluctuations described by the function
ℎ, the surface can be considered as an aperture. Similarly to the
Harvey-Shack surface scatter theory [Krywonos 2006], we assume
that the reflected field strength ratio is constant across the surface
patch, hence we use the Church reflection matrix 𝑸 (Eq. (7.40)) and
apply the reflection operator, Definition 8.8, to the incident sourced
RCSD. Having𝑸 be independent of the position on the surface patch
simplifies the numeric calculations to complex scalars (instead of
complex 2 × 2 matrices), but otherwise is done purely for simplicity
and convenience.
Without loss of generality we center the surface patch at the

origin, viz. ®x = 0. Then, ®s is the vector from the patch to the source,
𝑠 = |®s| is the mean distance from the surface patch to the source
and ŝ = ®s/𝑠 is the direction to the source from the surface patch.
And similar notation is employed for ®e. The sourced RCSD incident
upon the surface patch is generated via Definition 8.1. We denote ®x′
and ®x′′ as a pair of points on the surface and their projections onto
the mean surface plane as ®x′⊥, ®x′′⊥, likewise, we denote ®s′ as a point
on the cross-section of the light source facing the surface patch.
Making the typical far-field paraxial (small-angle) approximation,
the distance between a point ®x′ on the surface to ®s′ on the source is��®x′ − ®s′

�� = 𝑠 + |®x′ | − 2®s′ · ®x′
2𝑠 ′ + O

(
1
𝑠 ′2

)
≈ 𝑠 ′ − ŝ′ · ®x′ (9.2)

where the power expansion was simplified using |®x′ | ≪ 𝑠 . And
similarly for the distance between a point on the surface and the
imaging device ��®x′ − ®e

�� ≈ 𝑒 − ê · ®x′ (9.3)

Then, the RCSD that enters the “aperture” is denoted ℒ′ and is the
reflected and propagated sourced RCSD, viz.

ℒ′ (®x′⊥, ®x′′⊥, 𝜔 )
= 𝑸𝑪𝑒𝑖𝑘 (ŝ

′+ê) ·(®x′−®x′′) J3
2

[
𝜌𝑘 |x̂′ − x̂′′|]

𝑠 ′2 |x̂′ − x̂′′| 3
2

𝑸† (9.4)

where we applied Eqs. (9.2) and (9.3) and, for brevity, we denote 𝑪
as the shorthand for the (position-independent) constants in Defini-
tion 8.1. The familiar wave propagation term, exp [𝑖𝑘 (ŝ′ + ê) · ®x′],
that appears in Eq. (9.4), can be regraded as the propagator that
propagates the sourced RCSD to the “aperture”-plane (after reflec-
tion) taking the height fluctuations into account. We refer to it
as the frequency transmission function [Born and Wolf 1999] that
arises due to residual surface roughness. This expression can also be
found in other computer graphics works that deal with rendering
surface-induced diffractions [Holzschuch and Pacanowski 2017; Yan
et al. 2018]. While the frequency transmission function describes the
height fluctuations of the surface geometry, the scalar fraction that

appears in Eq. (9.4) describes the coherence properties (second-order
statistics) of the light incident upon the surface patch. We denote it
as the impulse response function, P, induced by the wave ensemble.
Making the approximation

|x̂′ − x̂′′| ≈ 1
𝑠 ′
|ŝ′ × (®x′⊥ − ®x′′⊥

) | (9.5)

(for some ®s′) which is an excellent approximation in the far-field,
the impulse response function for our incoherent spherical source
can be written as

P (®x′⊥ − ®x′′⊥, 𝜔
)
≜
𝑠

3
2 J3

2

[
𝜌𝑘
𝑠′

��ŝ′ × (®x′⊥ − ®x′′⊥
) ��]��ŝ′ × (®x′⊥ − ®x′′⊥

) �� 3
2

(9.6)

We now apply the diffraction operator, Definition 8.3, to Eq. (9.4)
and substitute the resulting expression into Eq. (9.1) yields

𝐿(®e) = Θ√
𝜌

1
𝐴Σ |ê · n̂|

∞∫
0

d𝜔
𝜆2 tr

[
𝑯 1

∫
𝒮2+

d2ŝ′ ŝ′ · n̂ℱ2
Σ

{
ℒ′}𝑯𝑇

2

]
(9.7)

where 𝒮2+ is the upper unit hemisphere in direction n̂ centred on ®x,
Σ = (𝛿®x)⊥ is the area on the mean surface plane that subtends 𝛿®x
and Θ is the solid angle subtended by the source

Θ ≜ 2𝜋©«1 −
√︄

1 − 𝜌2

𝑠2
ª®¬ (9.8)

The double two-dimensional Fourier transform of the sourced and
reflected RCSD in the expression above is then over the surface
geometry. As a double Fourier transform is cumbersome to numeri-
cally compute, we proceed by simplifying the expression:

ℱ2
Σ

{
ℒ′} =

∫
Σ

d2®x′⊥
∫
Σ

d2®x′′⊥ℒ′ (®x′, ®x′′, 𝜔 )
𝑒−𝑖𝑘 (ê·®x′⊥−ê·®x′′⊥)

= 𝑸𝑪𝑸†
∫
Σ

d2®x′⊥ 𝑒−𝑖𝑘 ê·®x
′⊥

×
[
ℱΣ

{
𝑒−𝑖𝑘 (ŝ

′+ê) ·(®x′−®x′′)
}
∗ℱΣ

{P (®x′⊥ − ®x′′⊥, 𝜔
)}]

(9.9)

where we applied the convolution theorem (Theorem 2.2). The ∗
denotes the two-dimensional convolution over the mean surface
plane. Both the Fourier transforms in the expression above are
over Σ and with respect to the double-primed integration variable
®x′′⊥. The convolution is evaluated at frequency (−𝑘 ê). Note that
by the Fourier transform shift identity and the variable change
®y′⊥ = ®x′⊥ − ®x′′⊥ the following holds

ℱ
{P(®x′⊥ − ®x′′⊥, 𝜔)

} ( ®𝜉) = −𝑒−𝑖 ®𝜉 ·®x′⊥ ℱ{P(®y′⊥, 𝜔)
} (−®𝜉

)
(9.10)

making the Fourier transform of the impulse response function
independent of ®x′⊥. Then, formally interchanging the orders of con-
volution and Fourier transform in Eq. (9.9) leads to

ℱ2
Σ

{
ℒ′} = −𝑸𝑪𝑸†

∫
R2

d2 ®𝜉ℱ{P(®x′′⊥, 𝜔)
} (−®𝜉

) ∫
Σ

d2®x′⊥ 𝑒−𝑖
®𝜉 ·®x′⊥

× 𝑒−𝑖𝑘 ê·®x′⊥
∫
Σ

d2®x′′⊥ 𝑒
𝑖
(
𝑘 ê+®𝜉

)
·®x′′⊥𝑒−𝑖𝑘 (ŝ

′+ê) ·(®x′−®x′′) (9.11)
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with R2 being the mean surface plane. By rearranging the terms
and performing the variable change ®𝜁 = −®𝜉 in the expression above
we can rewrite it as a convolution of independent expressions. Thus,
the double Fourier transform reduces to the more computationally-
tractable expression

ℱ2
Σ

{
ℒ′} = 𝑸𝑪𝑸† [T 2 ∗ℱ{P}] (𝑘 ê) (9.12)

with T being the Fourier transform of the frequency transmission
function, viz.

T
(
®𝜉
)
≜ℱΣ

{
𝑒𝑖𝑘 (ŝ

′+ê) ·[®x′⊥+n̂ℎ (®x′⊥)]
}
( ®𝜉) (9.13)

(where we write ®x′ = ®x′⊥ + n̂ℎ(®x′⊥) to make the height function
explicit) and T 2 ( ®𝜉) = T ( ®𝜉)T ( ®𝜉)★ is the frequency response function.
Eq. (9.12) is simply the two-dimensional convolution of the Fourier
transform of the impulse response function with the frequency
response function. Note that the impulse response function P is
a symmetric real function, therefore its Fourier transform is real.
Likewise, the frequency response function T 2 is evidently real.
Therefore, the double Fourier transform expression above is real as
well, as expected seeing as we are computing the observed radiance.

Finally, substituting Eq. (9.12) into Eq. (9.7) and applying the parax-
ial approximation by settings ®s′ = ®s, i.e. far-field with 𝑠 ≫ 𝜌 , yields
the simplified expression for the observed radiance of partially-
coherent light reflected from an explicitly described surface:

𝐿(®e) = Θ√
𝜌

1
𝐴Σ |ê · n̂|

∫ ∞

0

d𝜔
𝜆2 Λ(𝜔)

× tr
[
𝑯 1𝑸 (𝑯 2𝑸)†

] (
T 2 ∗ℱ{P}

)
(𝑘 ê) (9.14)

Numeric evaluation. The evaluation of Eq. (9.14) will typically
be done numerically. To that end it is more suitable to rewrite the
convolution as multiplication in Fourier space, viz.

T 2 ∗ℱ{P} = ℱ
{
ℱ-1{T 2} · P}

(9.15)

Then,ℱ-1{T 2} is evaluated via a pair of fast Fourier transforms
(FFT). As we only need a single frequency of the last transform, the
Goertzel algorithm (generalized to arbitrary frequencies [Sysel and
Rajmic 2012]) is used as it is faster, compared to an FFT, and provides
a sinc interpolated result. Overall, this implies a time-complexity of
O(𝑛 log𝑛).
Discussion. The derivations in this section have been focused on

an incoherent spherical source. A different light source would give
rise to a different impulse response function. However, as we evalu-
ate the impulse response function numerically, the same approach
remains applicable for any incident RCSD function.
Observe that for at the perfectly coherent limit, the impulse re-

sponse function becomes (see Eq. (7.12)) a constant, viz. P(®y, 𝜔) ∝
𝑘2. Then, its Fourier transform is ℱ{P} ∝ 2𝜋𝑘2𝛿 ( ®𝜉), i.e. propor-
tional to a Dirac delta. Using the fact that the Dirac delta is the
identity under convolution algebra, we get T 2 ∗ℱ{P} ∝ 2𝜋𝑘2T 2.
Hence, the observed intensity is proportional to the complex magni-
tude squared (i.e. power) of the Fourier transform of the amplitude
distribution over the surface, as described by Eq. (6.26). That is, the
problem reduces to a simple diffraction problem where we ignore
coherence, as expected.

In this sectionwe have derived an expression for the RCSD of light
reflected of a surface under the context of a vectorized diffraction
theory. Our primary result is showing that the reflected RCSD can
be formulated as the convolution between a function describing the
coherence properties of the incident wave ensemble and a function
describing the surface-induced perturbations: That is, a convolution
between the Fourier transform of the impulse response function P,
which is independent of the surface properties, and the frequency
response function T 2, which is the complex magnitude squared
of the Fourier transforms of the surface’s frequency transmission
function and is independent of the properties of the incident wave
ensemble. Some parallels can be drawn between this conclusion and
known results in optics regarding transmission of mutual intensities
through an optical system [Born and Wolf 1999]. See Figs. 5 to 8 for
rendered BRDFs visualizing the scattering of some specific surfaces.
Likewise, see Fig. 9 for a comparison with Yan et al. [2018].

Similar analysis can be performed to derive expressions for, e.g.,
the scattering of participating media, and other problems that can
be formulated as a diffraction problem.

10 VALIDATION
To validate our formalism we compare solutions to the surface scat-
tering problem (Subsection 9.1) rendered using Eq. (9.14) against a
ground truth. To produce a ground truth we consider again our for-
mal model of an (incoherent) light source that was used to express
and derive the sourced cross-spectral density (Subsection 7.1): A
large collection of (temporally invariant) discrete elementary radia-
tors, each modelled as a point light source emitting polychromatic
electromagnetic radiation with constant spectrum and strength and
random polarization and phase. As discussed, this is a very good
model for natural spontaneous emission light sources when the
emitted radiation is observed over long periods. Because each ele-
mentary radiator is a point source, it produced perfectly spatially
coherent radiation and we use the Smythe’s diffraction formula
(Eq. (6.26)) to evaluate the surface scattered radiation for a single
elementary radiator.

Formally, given an elementary radiator positioned at ®s ∈ R3, the
transverse components of its emitted radiation fields, propagated to
a distance 𝑟 from the source and at time 𝑡 , can be written as

®E
s (𝑟, 𝜔) =

[
𝐸s 1 (𝑟, 𝜔)
𝐸s 2 (𝑟, 𝜔)

]
=

√︁
Λ(𝜔) 𝑒

𝑖 (𝑘𝑟−𝜔𝑡+𝜑s)

𝑟

[
cos𝜃s
sin𝜃s

]
(10.1)

where𝜑s and𝜃s are the (mutually-independent) random initial phase
and polarization rotation angle and Λ is the emitted power spectral
density of a single elementary radiator. ®E

s (𝑟, 𝜔) can be thought of as
a realization of the wave ensemble comprising of contributions from
all the elementary radiators, hence the notation. The surface scat-
tered fields that arise due to radiation from the elementary radiator ®s
are denoted ®Es ′

𝑠,𝑝 (®e, 𝜔), for the s- and p-polarized fields respectively,
and those follow immediately from our surface reflection model
(formalised via the Church polarization factors, Eqs. (7.36) to (7.39)):

𝐸s ′
𝜁 (®r, 𝜔) = ê′𝜁 ·𝒟®r

{
𝐸s 1 · 𝑞𝑠𝜁 ê𝑠 + 𝐸s 2 · 𝑞𝑝𝜁 ê𝑝

}
(10.2)

where 𝜁 ∈ {𝑠, 𝑝} indexes the transverse field component, {ê𝑠 , ê𝑝 }
and {ê′𝑠 , ê′𝑝 } are the orthonormal bases for the incident and scattered
wave’s s- and p-polarization decomposition, respectively, 𝑞𝑠𝑠 , 𝑞𝑠𝑝 ,
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(c) Validation (BRDF lobes in flat-land)

Fig. 5. (b) BRDF visualizations (normalized intensity) of the diffraction effects that arise when natural, partially-coherent light scatters of a surface were
rendered using our method. A uniformly scratched aluminum surface (topography visualized in figure (a)) is illuminated by a D65 light source of radius 8 mm
that is positioned directly above the surface. By varying the distance of the source from the surface we change the coherence properties of the incident wave
ensemble, resulting in starkly different scattering behaviour. (c) Numeric validation of our method (solid plots) against the ground truth (dashed plots) in
flat-land for the same scratched surface. The radius of the light source is 1 mm and the ground truth is generated using 49 087 elementary radiators. We
compare (first row) each primary colour component as well as the (second row) total luminance. Absolute luminance difference is plotted as well (second row,
dash-dotted red plot).

𝑞𝑝𝑠 and 𝑞𝑝𝑝 are the Church reflection (polarization) factors and𝒟 is
the diffraction operator, which is simply defined using the Smythe’s
diffraction formula:

𝒟®r
{
®E
}
≜ 𝑖𝑘

𝑒𝑖𝑘𝑟

2𝜋𝑟 r̂ ×
∫
Σ

d2®x′⊥
[
n̂ × ®E(

𝑥 ′⊥, 𝜔
) ]
𝑒−𝑖𝑘 r̂·®x

′⊥

= 𝑖𝑘
𝑒𝑖𝑘𝑟

2𝜋𝑟 r̂ ×ℱΣ

{
n̂ × ®E(

𝑥 ′⊥, 𝜔
)} (𝑘 r̂) (10.3)

where we reuse the same notation as in Subsection 9.1: Σ is the
mean surface plane that subtends the actual surface with ®x′⊥ ∈ Σ
being points on that plane and corresponding points on the surface
are ®x′ = ®x′⊥ + n̂ℎ(®x′⊥). Finally, the intensity, observed by an observer
positioned at ®r, is the time-averaged Poynting vector (Eq. (4.15))
of the super position of scattered contribution from all elementary

radiators, viz.

𝐼 (®r, 𝜔) =
〈�����∑︁s 𝐸s ′

𝑠 (®r, 𝜔)
�����2 +

�����∑︁s 𝐸s ′
𝑝 (®r, 𝜔)

�����2
〉
t

(10.4)

The radiators are correlated only over a very short spatial dis-
tance. As discussed, this correlation distance serves to only scale the
intensity of the produced radiation by a constant. Therefore, we can
simply assume that this spatial distance is small and all elementary
radiators are uncorrelated. This greatly simplifies the numerical
calculations, as contributions can now be added on an incoherent
basis: 〈�����∑︁s 𝐸s ′

𝜁 (®r, 𝜔)
�����2
〉
t
=

∑︁
s

〈��� 𝐸s ′
𝜁 (®r, 𝜔)

���2〉
t

(10.5)

, Vol. 1, No. 1, Article . Publication date: April 2021.



Generic Framework for Physical Light Transport - Derivations • 29

60 µm
30

60

90

120

150

(nm)

(a) Topology

𝑑 = 250mm 𝑑 = 500mm 𝑑 = 1500mm 𝑑 = 4000mm
(b) BRDFs (normalized)

𝑥−0.75 −0.25 0.25 0.75 𝑥

𝑦

−0.75

−0.25

0.25

0.75

−0.75 −0.25 0.25 0.75 𝑥

𝑦

−0.75

−0.25

0.25

0.75

−0.75 −0.25 0.25 0.75 𝑥

𝑦

−0.75

−0.25

0.25

0.75

−0.75 −0.25 0.25 0.75

𝑑 = 10mm 𝑑 = 35mm 𝑑 = 70mm 𝑑 = 150mm 𝑑 = 500mm 𝑑 = 2500mm

−𝜋
4 0 𝜋

4
𝜃

−𝜋
4 0 𝜋

4 −𝜋
4 0 𝜋

4

red green blue luminance luminance (difference)

−𝜋
4 0 𝜋

4 −𝜋
4 0 𝜋

4 −𝜋
4 0 𝜋

4
𝜃

RMSE = 0.005969 RMSE = 0.006484 RMSE = 0.003173 RMSE = 0.005720 RMSE = 0.002569 RMSE = 0.000534

(c) Validation (BRDF lobes in flat-land)

Fig. 6. (a) An aluminum surface that has undergone electric polish resulting in low intrinsic roughness and highly anisotropic details. (b) BRDF visualizations
(normalized intensity) under partially-coherent illumination produced by a fluorescent F1 model light source. The anisotropic surface features give rise to
a strongly directional scattering behaviour. (c) Validation in flat-land. For validation the radius of the light source is set to 1 mm and the ground truth is
generated using 49 087 elementary radiators.

Moreover, with some algebra the time-averages above can be written
as〈��� 𝐸s ′

𝜁 (®r, 𝜔)
���2〉

t
= lim
𝑇→∞

1
2𝑇

∫ 𝑇

−𝑇
d𝑡

��� 𝐸s ′
𝜁 (®r, 𝜔)

���2
=
𝑘2Λ(𝜔)
8𝜋2𝑟2

[���𝑞𝑠𝜁 ê′𝜁 · (r̂ × (n̂ × ê𝑠 ))
���2 + ���𝑞𝑝𝜁 ê′𝜁 · (r̂ × (

n̂ × ê𝑝
) ) ���2]

×
����ℱΣ

{
1

|®s − ®x′ | 𝑒
𝑖𝑘 [ŝ(®x′)+r̂(®x′) ] ·®x′

}
(𝑘 r̂)

����2 (10.6)

(this analysis uses the fact that𝜑s and 𝜃s are statistically independent
to carry out the integration separately) where the unit vectors ŝ and
r̂ above are the unit vectors in direction of the elementary radiator
and observer, respectively, at the integrated surface position, i.e.

ŝ
(®x′) ≜ ®s − ®x′

|®s − ®x′ | r̂
(®x′) ≜ ®r − ®x′

|®r − ®x′ | (10.7)

Substituting Eqs. (10.5) and (10.6) into Eq. (10.4) and integrating
over the spectrum yields the final formula for the observed intensity

of light scattered of a surface:

𝐼 (®r) =
∞∫

0

d𝜔 𝑘2Λ(𝜔)
8𝜋2𝑟2

∑︁
s

����ℱΣ

{
1

|®s − ®x′ | 𝑒
𝑖𝑘 [ŝ(®x′)+r̂(®x′) ] ·®x′

}
(𝑘 r̂)

����2
×

∑︁
𝜉,𝜁 ∈{𝑠,𝑝 }

���𝑞𝜉𝜁 ê′𝜁 ·
(
r̂ ×

(
n̂ × ê𝜉

))���2 (10.8)

The Fourier transform that appears above is essentially the same
frequency transmission function that was encountered in Subsec-
tion 9.1, and the complex magnitude of this Fourier transform is
then the frequency response function T 2. This is altogether ex-
pected as the scatter formalism of our surface is unchanged. Note
that the derivations in this section ignore the formulae that were de-
veloped in Sections 7 and 8 and are devoid of any optical coherence
formalism. Indeed, we derive Eq. (10.8) simply by modelling the
spontaneous emission light source as a large collection of indepen-
dent elementary radiators, each a point light source giving rise to
(spatially) coherent radiation, and apply well-founded results in op-
tics: Namely the Smythe diffraction formulae which are well studied
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(d) Validation (BRDF lobes in flat-land)

Fig. 7. (a) A microscopy photograph of an AMOLED screen with a diamond pitch pixel arrangement (used in some hand-held devices), with its (b) surface
topology visualized. That topology admits an interesting 8-way symmetry in the induced diffraction patterns, which can be seen in the (c) rendered BRDFs
(zoomed-in and with artificially increased contrast for visualization purposes). We used an F1 fluorescent light source with a radius of 8 mm positioned directly
above the surface for the rendered BRDFs. The distances between the constructive-interference peaks is consistent with Bragg’s diffraction law. (d) Validation
in flat-land. For validation the radius of the light source is set to 1 mm and the ground truth is generated using 49 087 elementary radiators.

and known to be produce accurate solutions to Maxwell’s equations
in the Fraunhofer region [Zangwill 2013]. Assigning random phases
to each elementary radiator can be thought of as applying a random
phase screen to a coherent source [Xiao and Voelz 2006].
Finally, also observe that as the unit vectors ŝ(®x′) and r̂(®x′) de-

pend both on the surface position, i.e. the variable ®x′, as well as the
position of the elementary radiator ®s. This greatly relaxes the parax-
ial approximations that are made in the derivation of the Smythe
diffraction formulae (see Subsection 6.2), implying that Eq. (10.8)
describes an accurate solution to Maxwell’s equations when the dis-
tances to the source and observer are large compared to wavelength
only, i.e. 𝑟, 𝑠 ≫ 𝜆.

Results. We compare renderings of surface-induced diffraction
effects achieved via Eq. (9.14) against the ground truth computed
using Eq. (10.8). Because a high count of elementary radiators is
required, numerical evaluation of the ground truth is only feasible in
two-dimensional space. We use a light source with a radius of 1 mm

and with elementary radiators spaced at 8 µm intervals, implying
roughly 50 000 elementary radiators. Note that inR2 the derivations
in Subsection 9.1 change very slightly: The source’s geometry be-
comes a disk instead of a ball and thus its Fourier transform results
in a Bessel function of a different order. The rest of the analysis
remains the same.
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(c) Validation (BRDF lobes in flat-land)

Fig. 8. (a) A sandpaper polished gold surface with isotropic statistics. (b) BRDF visualizations (normalized intensity) generated when the surface is illuminated
by a D65 light source. We vary the height-scale of the surface, ℎ, to compare the BRDFs between different levels of roughness: For a very smooth surface (on
the left), the only visible details are the reflection of the light source, however, as we increase the roughness (left to right), surface diffractions effects appear
isotropically. (c) Validation in flat-land. For validation the radius of the light source is set to 1 mm and the ground truth is generated using 49 087 elementary
radiators.
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Fig. 9. Comparison of (b) our method against (c) Yan et al. [2018]. Both methods were employed on the (a) same surface topology. We used the implementation
provided by Yan et al. [2018] to render the BRDF produced by their method. Some differences in colour temperature and white point are expected, however
the produced patterns are similar. Both BRDFs were rendered with 32 spectral samples. The methods admit comparable rendering times.
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Appendix
A FOURIER TRANSFORMS OF SPECIAL GEOMETRIES

A.1 Fourier Transform of a Ball
Let 𝐵𝑑 be the unit ball in 𝑑-dimensions, i.e. 𝐵𝑑 = {®r ∈ R𝑑 : |®r| ≤ 1}.
The Fourier transform of the ball is related to the Bessel function of
the first kind of half-integer orders via [Gel̀fand 1964]

ℱ
{
1𝐵𝑑

} ( ®𝜉) = ∫
𝐵𝑑

d𝑑®r′ 𝑒−𝑖®r′ · ®𝜉 =
(2𝜋)𝜈
|𝜉 |𝜈 J𝜈 ( |𝜉 |) (A.1)

with 𝜈 = 𝑑
2 and 1𝐵𝑑 the characteristic function of the ball. And in

general for a ball of radius 𝜌 :

ℱ
{
1𝜌𝐵𝑑

} (
®𝜉
)
=

(2𝜋𝜌)𝜈
|𝜉 |𝜈 J𝜈 (𝜌 |𝜉 |) (A.2)

A.2 Fourier Transform of a Cylinder
A cylinder inR3 centred around the origin with height ℎ and radius
𝜌 can be represented as

𝐶 (ℎ, 𝜌) ≜
{
(𝑥,𝑦, 𝑧) ∈ R3 :

√︃
𝑥2 + 𝑦2 ≤ 𝜌 ∧ |𝑧 | ≤ ℎ

2

}
(A.3)

Let 1𝐶 (ℎ,𝜌) be its characteristic function and ®𝜉 = (𝑥,𝑦, 𝑧) ∈ R3 an
arbitrary frequency. Denote ®𝜉⊥ = (𝑥,𝑦), the projection of ®𝜉 onto the
𝑥𝑦-plane. Then, the Fourier transform of the 3-dimensional cylinder
is evidently related to the transform of a 2-dimensional disk (with
frequency ®𝜉⊥), viz.

ℱ
{
1𝐶 (ℎ,𝜌)

} ( ®𝜉) = ∫
𝐶 (ℎ,𝜌)

d3®r′ 𝑒−𝑖®r′ · ®𝜉

= ℱ
{
1𝜌𝐵2

}
(𝜉⊥)

∫ ℎ
2

−ℎ
2

d𝑧′ 𝑒−𝑖𝑧𝑧
′

=
2𝜋ℎ𝜌
|𝜉⊥ | sinc

(
ℎ𝑧

2

)
J1 (𝜌 |𝜉⊥ |) (A.4)

A.3 Fourier Transform of a Polytope
The Fourier transform of a polygon in two-dimensional space was
discussed by Shung-Wu Lee and Mittra [1983]. We present a slightly
modified derivation that is applicable to higher-dimensions.

Let Σ be a 𝑑-dimensional simple (non self-intersecting) polytope
and 1Σ its characteristic function. The Fourier transform is then

ℱ{1Σ}
(
®𝜉
)
=

∫
Σ

d𝑑®r′ 𝑒−𝑖®r′ · ®𝜉 = − 1
|𝜉 |2

∫
Σ

d𝑑®r′ ∇2𝑒−𝑖®r
′ · ®𝜉

= − 1
|𝜉 |2

∮
𝜕Σ

d𝑑−1®s′ · ∇𝑒−𝑖®s′ · ®𝜉

=
𝑖

|𝜉 |2
∮
𝜕Σ

d𝑑−1®s′
(
®𝜉 · n̂

)
𝑒−𝑖®s

′ · ®𝜉 (A.5)

where we used Green’s first identity to go from the volume integral
to the integral over the boundary of the polytope. n̂ is the (outwards)
normal to the boundary at point ®s. Green’s first identity can be
repeatedly applied a further 𝑑 −2 times until the boundary is a finite
set of one dimensional line segments.
Given 𝑑 = 2, the polygon consists of an ordered 𝑁 -tuple of ver-

tices denoted (®x1, . . . , ®x𝑁 ). We define 𝑙 𝑗 = |®x𝑗+1 − ®x𝑗 | , the length

of an edge; and d̂𝑗 = (®x𝑗+1 − ®x𝑗 )/𝑙 𝑗 , the direction of an edge. Our
indexing convention is modulo 𝑁 , that is ®x𝑁+1 ≡ ®x1. Then, the last
integral in Eq. (A.5) is a sum of line integrals:

𝑖

|𝜉 |2
∮
𝜕Σ

d®s′ 𝑒−𝑖®s′ · ®𝜉
(
®𝜉 · n̂

)
=

𝑖

|𝜉 |2
𝑁∑︁
𝑗=1

(
®𝜉 · n̂𝑗

) ∫ 𝑙 𝑗

0
d𝛼 𝑒−𝑖

(
®x𝑗+𝛼 d̂𝑗

)
· ®𝜉

(A.6)

where the integral admits a closed-form solution. Applying a few
elementary simplifications we can conclude

ℱ{1Σ}
(
®𝜉
)
=

1
|𝜉 |2

𝑁∑︁
𝑗=1

®𝜉 · n̂𝑗
®𝜉 · d̂𝑗

[
𝑒−𝑖®x𝑗 · ®𝜉 − 𝑒−𝑖®x𝑗+1 · ®𝜉

]
(A.7)

for a two-dimensional polygon.

Transform of a rectangular aperture. The Fourier transform of
an axis-aligned rectangular aperture with edge lengths 𝑎 and 𝑏 is
a special case of the polygon transform. In this scenario 𝑁 = 4;
®x1 = −®x3 and ®x2 = −®x4; 𝑙1 = 𝑙3 = 𝑎 and 𝑙2 = 𝑙4 = 𝑏; d̂1 = −d̂3 =
n̂2 = −n̂4 = +ŷ and d̂2 = −d̂4 = n̂3 = −n̂1 = +x̂. Denote 𝜉 · x̂ = cos𝜃 ,
then, after a few simplifications the Fourier transform of the polygon
(Eq. (A.7)) becomes

ℱ
{
1rect𝑎,𝑏

} ( ®𝜉)
=

2
|𝜉 |2

{[
cos

(
𝜉𝑥
𝑏

2 − 𝜉𝑦 𝑎2

)
− cos

(
𝜉𝑥
𝑏

2 + 𝜉𝑦 𝑎2

)]
(tan𝜃 + cot𝜃 )

}
=

4
𝜉𝑥𝜉𝑦

sin
(
𝑏𝜉𝑥

2

)
sin

(
𝑎𝜉𝑦

2

)
= 2𝑎𝑏 sinc

(
𝑏𝜉𝑥

2

)
sinc

(
𝑎𝜉𝑦

2

)
(A.8)

where we used trigonometric identities. Thus we have confirmed
the well-known result that the transform of a rectangular aperture
is proportional to the sinc function.

B HELMHOLTZ RECIPROCITY
Assume that a single source gives rise to the irradiance impinging
on an aperture Σ from direction Ω1, and using Eq. (8.5) the cross-
spectral density can be written as (assuming quasi-homogeneous
source, which serves a decent illustrative approximation in the far-
field)

𝒲
���
Σ
=

∫
𝒮2

d2Ω′ ��Ω′ · n̂
��ℒ(𝑖)

Ω′ = |Ω1 | |Ω1 · n̂|ℒ(𝑖)
Ω1

(B.1)

where ℒ(𝑖)
Ω1

is the RCSD incident from the source and |Ω1 | is the
solid angle subtended by the source. Using the diffraction opera-
tor, the spectral radiance quantified by the RCSD of the radiation
diffracted and scattered in direction Ω2 can be expressed as follows:

ℒ(𝑠)
Ω1

���
r̂1=r̂2=Ω2

= 𝒟
{
𝒲

���
Σ
, Σ

}���
r̂1=r̂2=Ω2

=
|Ω1 | |Ω1 · n̂|𝑒𝑖𝑘 (𝑟1−𝑟2)

𝜆2𝐴Σ |Ω2 · n̂|
𝑯Ω1𝚿Ω1𝑯

𝑇
Ω1

(B.2)

which the subscript denoting the direction of the source. Note that
the matrices 𝑯 in the expression above are equal when r̂1 = r̂2.
The reciprocal problem is the setting with a source radiating from
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Ω2 and observing the diffracted radiation in direction Ω1, which
analogously is

ℒ(𝑠)
Ω2

���
r̂1=r̂2=Ω1

=
|Ω2 | |Ω2 · n̂|𝑒𝑖𝑘 (𝑟1−𝑟2)

𝜆2𝐴Σ |Ω1 · n̂|
𝑯Ω2𝚿Ω2𝑯

𝑇
Ω2

(B.3)

We choose our bases such that ê1 = ê′1 and both are perpendicular
to the plane spanned by Ω1 and Ω2, and this fixes the second base
components (up to a sign). In this case, with some vector algebra
we deduce that 𝑯Ω1 = |Ω2 · n̂| 𝑰 and 𝑯Ω2 = |Ω1 · n̂| 𝑰 . Hence, if
|Ω1 | = |Ω2 |, then the “geometric” terms in the expressions Eqs. (B.2)
and (B.3) (all terms except 𝚿) become equal. Nonetheless, clearly 𝚿

is not reciprocal in general.
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