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Fig. 1. The ability of a light beam to produce observable wave interference phenomena evolves globally: A small but powerful white LED source (marked by
a yellow circle) illuminates a scene. The light falls upon the head of a desk lamp made of brushed aluminum, however (a) no diffractive effects are visible
because the lamp is close to the source. The light beam is then incident upon a Venus de Milo statue made of scratched bronze. The illumination of the upper
part of the statue is dominated by direct incident light, and (b) visible interference patterns arise. On the other hand, light reaching the lower parts of the
statue is diffused by a large decorative vase filled with water, altering the coherence properties of the light and (c) diminishing the observable diffraction
effects. Rendering is done using a bi-directional path tracer that propagates coherence information, under our formalism, from the light sources. The lamp
head and the scratches on the statue are rendered using the tools developed in Subsection 8.1, propagation of partially-coherent light through participating
media is discussed in Subsection 8.3 and the other surfaces are rendered classically. See Subsection 8.4 for additional implementation details. The insets were
individually rendered and have adjusted contrast and exposure for visualization proposes.

Physically accurate rendering often calls for taking the wave nature of light
into consideration. In computer graphics, this is done almost exclusively
locally, i.e. on a micrometre scale where the diffractive phenomena arise.
However, the statistical properties of light, that dictate its coherence char-
acteristics and its capacity to give rise to wave interference effects, evolve
globally: these properties change on, e.g., interaction with a surface, diffu-
sion by participating media and simply by propagation. In this paper, we
derive the first global light transport framework that is able to account for
these properties of light and, therefore, is fully consistent with Maxwell’s

Authors’ addresses: Shlomi Steinberg, p@shlomisteinberg.com, University of California,
Santa Barbara, 2119 Harold Frank Hall, Santa Barbara, California, 93106, USA; Ling-Qi
Yan, lingqi@cs.ucsb.edu, University of California, Santa Barbara, 2119 Harold Frank
Hall, Santa Barbara, California, 93106, USA.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3450626.3459791.

electromagnetic theory. We show that our framework is a generalization
of the classical, radiometry-based light transport—prominent in computer
graphics—and retains some of its attractive properties. Finally, as a proof of
concept, we apply the presented framework to a few practical problems in
rendering and validate against well-studied methods in optics.
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1 INTRODUCTION
Light transport is a theoretical underpinning of computer graphics,
formalising the mathematical model that drives modern rendering
and image synthesis, as well as other related studies such as inverse
rendering and computer vision. For many years, light transport have
been formulated under the context of classical radiometry, with the
core quantities being values of intensity and radiance. However, it
has been conclusively shown that radiometry is not consistent with
more physical foundations of optics, such as Maxwell’s electromag-
netic theory. Indeed, a radiometric foundation lacks the rigour to
perceive the wave-nature of light, and derived frameworks are not
able to accurately account for the grating patterns that appear on
compact disks (CD), holographs and LCD screens; goniochromatic
surfaces and iridescence effects in coated or painted materials and
in layered materials such as the human skin; certain atmospheric
and liquid scattering effects; pleochroism and birefringent effects
in molded plastics and framed glass; the unique visual response of
cloth and fabric; lens- and aperture-induced artefacts; as well as
other effects and phenomena that arise due to diffraction.
To model such effects, electromagnetism has been extensively

employed in computer graphics, but only applied locally, in order to
study a particular effect. This works reasonably well on a nanoscopic
scale, e.g., to reproduce thin-film interference. On the other hand,
the highly chaotic nature of natural light renders deterministic
models of light inadequate in describing the propagation of such
light, and thus difficult to apply globally. But a global treatment is
desired: These coherence properties of light—the light’s ability to
superpose and induce wave interference—are in fact a global process,
as coherence arises due to propagation of light and is then altered
by the interaction of light with matter and media (see illustrative
example in Fig. 1). Furthermore, temporal coherence effects are only
resolved during the observation of light, that is at the eye or camera
and not locally at the source of diffraction.
This restricted coherence of light arises due to the fact that the

natural light that we observe daily can be physically regarded as
a collection of very many individual electromagnetic waves, each
acting independently but together orchestrating the different prop-
erties of each beam of natural light. This greatly hinders the success
of any deterministic attempt to model natural light, and instead calls
for a stochastic formalism. Over the past few decades such optical
formulations that deal with observable, measurable quantities took
shape in the optical literature. An important theoretical conclusion
from that work is that single-point stochastic descriptions, such as
the classical radiometric radiance (which, being a time-averaged
quantity, can be considered as a first-order moment), are insufficient
to physically describe the propagation and diffraction of natural
light [Wolf 2007]. Rather, a two-point formalism, which provides
richer information and can quantify the statistical correlation of an
ensemble of many waves at two spacetime points, is required.
Building upon those foundations, we present the first general-

purpose global light transport theory that deals exclusively with
partially-coherent natural light. Our guiding physical principle is
the (non-relativistic) electromagnetic theory, with which our frame-
work is fully consistent. To be able to describe the two-point coher-
ence information of light, our basic quantities are functions, and

sourcing, propagation, diffraction and light-matter interactions are
modelled in terms of operators that act upon those functions. Our
contributions can be summarised as follows:

• Our theory retains some of convenience of classical radi-
ance and light transport is formalised via the spectral-density
transport equation, a “wave optics”-analogue of the rendering
equation (Section 4).

• We formally show that our framework reduces in the short-
wavelength limit to the classical radiometric formulation of
light (“geometric optics”), thus in essence generalizing tradi-
tional light transport (Appendix B).

• To analytically quantify the radiation we call “natural light”,
we define a model of what constitutes a natural light source
and formally derive the analytic expressions for electromag-
netic radiation sourced from that model (Section 5). Despite
the variety of such light sources, natural and artificial, they
are all driven by the same quantum mechanical principle–
spontaneous emission—and hence ourmodel is able to capture
the defining characteristic of virtually all such sources. We
show good agreement with well-known theory and experi-
mental results.

• We discuss the propagation of partially-coherent light under
our formalism and derive the relevant diffraction formulae
(Section 6).

• Finally, we present a few practical applications of our frame-
work, and validate against a deterministic model formulated
using established methods in electromagnetism (Section 8).

This paper is intended to serve as a theoretical foundation. The
focus of our discussion is set on a general-purpose framework and
ignores practical technical considerations. While we provide a com-
plete formulation of free-space propagation and sourcing of natural
light, due to the breadth and complexity of a comprehensive light-
matter discussion, such a discussion is mostly left for future work.
Hence, we derive light-matter interaction operators only for simple
and idealised cases (Section 7), which limits the immediate practical
applicability of our work. Nevertheless, we do demonstrate a couple
of applications (Section 8) that show that our theory is practically
suitable to describing local and global transport problems.

1.1 Motivation for Our Work
Light transport formulated under the context of classical radiometry
remains the de facto formalism in computer graphics. Its strength
can be found in its simplicity and intuitive geometrical proper-
ties. Nonetheless, in the quest for physical realism the computer
graphics community has oft turned to the electromagnetic theory in
the aim of reproducing “wave optics” effects, diffraction and wave-
interference, which can not be described radiometrically. Global
application of electromagnetism—beyond small, localized instances—
remains elusive: Finding a solution to Maxwell’s differential equa-
tions typically involves considerable analytic difficulty, which is
exacerbated by the fact that natural light is composed of very many
distinct waves. Thus, applications of the classical electromagnetic
theory in computer graphics remain confined to reproducing opti-
cal phenomena that arise on microscopical spatial scales. Optical
coherence theory, like traditional light transport, concerns itself
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with the observable (time-averaged) properties of light, however it
fully accounts for the electromagnetic nature of light and is able to
reproduce the phenomena that arise due to that nature.

Our aim is to bridge the theoretical gap between a physical formu-
lation of light and the practical radiometric description employed in
computer graphics. Informally, our formalism can be thought of as
(rigorously and accurately) fusing the traditional radiance with two-
point information describing the coherence properties of light. And
indeed, we will show that some of the intuitive concepts of radiance
can still be recovered, and, additionally, at the short-wavelength
limit our formalism reduces to “geometric optics” (see Appendix B).
Our incentive for this approach is the crucial feature that arises:
this formalism can describe an entire spectrum between classical
radiometry and the physical optics that is consistent with electro-
magnetism. That is, these “radiance-carrying” cross spectral density
functions can serve as theoretical drop-in replacements for classical
radiance in computer graphics algorithms, effectively injecting all
the information needed to quantify diffractive effects. Then, sub-
stituting the classical propagation with physical diffraction in the
algorithm can be done selectively as it makes practical sense (see
examples in Section 8).

Generalized radiance. Similar notions have been studied before:
In optical literature, the seminal paper by Walther [1968] proposed
using the related Wigner distribution function (WDF) as a form of
a generalized radiance, generalizing some aspects of the radiometric
concept of radiance to physical optics. A vast body of work that
followed attempted to connect the theory of partial coherence with
classical radiometry, and the WDF has also seen use in computer
graphics (see Section 2). The WDF is a powerful space-frequency
signal analysis tool that is defined as the Fourier transform of the
autocorrelation function of a signal (e.g., the cross-spectral density
function, Eq. (12)) around a point. Attractive properties arise: the
WDF is real-valued and, being a directional quantity, conserved
along geometric rays. It is not non-negative, however, and it has
been shown that no function that is linearly related to the cross-
spectral density may satisfy all the physical requirements of classical
radiance [Friberg 1979].
This non-negativity prohibits the interpretation of the WDF as

an energy density. Therefore, recovering intensity from the WDF
requires additional work, i.e. a Fourier transform or spatial inte-
gration, and similarly additional analytic work is required to com-
pute the WDF of model light sources. Being a space and spatial
frequency joint distribution, the WDF is also more difficult to rea-
son about. This motivates us to drop a search for a “generalized
radiance”. Instead, we devise a physical optics generalization of the
light transport principles used in contemporary computer graphics,
formulated using a form of the cross-spectral density function (in-
troduced in Section 4), giving rise to a general purpose framework
of partially-coherent light transport.

2 RELATED WORK
Of particular relevance is the work by Oh et al. [2010], which shares
some of the motivational basis with our work: They propose gen-
eralizing the classical light transport used in computer graphics
with a more physical formalism by using the Wigner distribution

function (WDF) as a “generalized radiance” that retains some of the
intuition of ray-based optics. However, no model that deals with
transport of natural light—partially-coherent light—is formulated,
nor are the relevant rendering equations derived. Furthermore, a
WDF is a more analytically difficult quantity to work with (com-
pared to the cross-spectral density) and even so does not adhere to
all the characteristics of radiometric radiance. The shortcomings of
this approach were discussed in Subsection 1.1.
In an attempt to quantify the limited spatial coherence of radia-

tion, a Gaussian footprint is used to modulate coherent contribu-
tions for the purpose of rendering diffractive scratches [Werner
et al. 2017], measuring diffraction grating patterns using Jones cal-
culus [Toisoul et al. 2018] and the rendering of biological diffractive
surfaces [Dhillon et al. 2014]. A more sophisticated approach is to
use overlapping kernels, where each kernel roughly models the
spatial coherence footprint, and contributions from distinct kernels
are added incoherently. Such Gaussian kernels were used to accu-
rately model diffractions that arise from explicitly defined surface
micro-geometry [Falster et al. 2020; Yan et al. 2018], and simple
square kernels for the construction of high-resolution BRDFs [Levin
et al. 2013]. Two-point information has been used by Steinberg and
Yan [2021], in the form of mutual intensities related by the mutual
coherence function, for the purpose of drawing a subjective speckle
pattern that arises on scatter from a statistical surface. Such an
approach is accurate and able to describe well arbitrary shapes of
the mutual coherence function, however as this is a deterministic
formalism, integration is slow. Gkioulekas et al. [2015]; Kotwal et al.
[2020] interferometrically decompose light transport in an imaged
scene by using light with controlled coherence properties.

Fully coherent light transport, described electromagnetically, has
been employed to render optical speckle fields [Bar et al. 2019, 2020].
A large body of work has applied the electromagnetic theory locally,
for the study of a particular optical effect. Stam [1999] presented
the first work that considered the electromagnetic nature of light.
Additional works studied diffraction-aware BSDFs [Cuypers et al.
2012; Toisoul and Ghosh 2017; Velinov et al. 2018], iridescence in
pearlescent materials [Guillén et al. 2020], thin-film interference
[Belcour and Barla 2017; Kneiphof et al. 2019] and real-time render-
ing of birefringent materials [Steinberg 2019]. Sadeghi et al. [2012]
introduce a framework for simulating the scattering that arises by
non-spherical particles, with application to rendering rainbows.

Somework employ various forms of integral or differential solvers
to devise a solution to Maxwell’s equations for some special case.
Steinberg [2020] renders liquid-crystal micrographs via an approx-
imative analytic solution to a light transport differential system.
Musbach et al. [2013] use the finite-difference time-domain (FDTD)
method for numerically solving the propagation of electromagnetic
radiation in a scene. The FDTD method was also adapted the pur-
pose of nanofabrication of materials with pigment-free structural
colours Auzinger et al. [2018].

The “coherency matrix” was employed in computer graphics for
studying some local cases of coherent light transport [Guy and
Soler 2004; Wilkie et al. 2001], though only to quantify the state of
polarization of light and not in-order to propagate partially-coherent
light.
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3 THEORETICAL FOUNDATIONS
The purpose of this section is threefold: (i) Outline the required
theoretical foundations in brief. The curious reader is referred to
the more comprehensive and rigorous background that is presented
in our supplemental material. (ii) Summarise contemporary light
transport formalisms, as well as related work that have been em-
ployed in computer graphics and computational optics. (iii) Finally,
discuss the shortcomings of the state-of-the-art. We also use this
opportunity to familiarize the reader with our notation.

Notation. See Table 1 for a list of symbols and notation. Most of
our notation is self-explanatory, however we would like to point out
two potential sources of confusion. The common conventions for the
definition of the Fourier transform vary in terms of the kernel and
normalization factors. Our definition for the (spatial) 𝑛-dimensions
transform is the non-unitary, angular frequency version commonly
employed in optical literature:

ℱ

{
𝑓
} (
®k
)
≜

∫
R𝑛

d𝑛®r′ 𝑓 (®r′)𝑒−𝑖®k·®r′ (1)

ℱ
-1
{
𝑔
}
(®r) ≜ 1

(2𝜋)𝑛
∫
R𝑛

d𝑛®k′𝑔
(
®k′
)
𝑒𝑖
®k′ ·®r (2)

This choice is justified by the fact that in this form the inverse
Fourier transform above represents the superposition of plane-wave
modes that compose an analytic signal. In addition, note also the
following vector notation (borrowed from [Zangwill 2013]) which
we use throughout the paper: Given some vector ®r, we denote r̂ as
the unit vector in direction of ®r and its magnitude as 𝑟 = |®r| .

3.1 Traditional Light Transport
Traditional light transport in computer graphics draws upon radiom-
etry to describe the propagation and (equilibrium) distribution of
power. The basic quantity is the radiance, defined as 𝐿 = 𝜕2Φ

𝜕Ω𝜕𝐴 cos𝜃
(Φ is radiant flux, Ω is the solid angle subtended by the collector, 𝐴
is the cross-sectional area of the source and cos𝜃 is the obliquity
factor), and the driving equation is the iconic rendering equation
[Kajiya 1986], to which we refer as the light transport equation (LTE):

𝐿𝑜 (®p,Ω𝑜 , 𝜔, 𝑡) = 𝐿𝑒 (®p,Ω𝑜 , 𝜔, 𝑡)

+
∫
𝒮2

d2Ω′ 𝑓𝑟
(®p,Ω′,Ω𝑜 , 𝜔, 𝑡

)
𝐿𝑖
(®p,Ω′, 𝜔, 𝑡

) ��Ω′ · n̂
�� (3)

where 𝐿𝑜 is the exitant spectral radiance, 𝐿𝑒 is the emitted radiance,
𝐿𝑖 is the incident spectral radiance, 𝒮2 is the unit sphere centred
at the point of interest ®p, 𝜔 is the radiation angular frequency, 𝑡 is
time, 𝑓𝑟 is the bidirectional scattering distribution function (BSDF),
Ω ≡ (𝜃, 𝜙) is the spherical angle with d2Ω = sin𝜃 d𝜃 d𝜙 being
the differential solid angle, and Ω𝑜 ,Ω

′ are the exitant and incident
angles, respectively.

Such a radiometric description of light (sometimes referred to as
“geometric optics”) admits nice properties:

(1) The LTE is linear;
(2) Radiance is linear under superposition of light, which is no

longer the case when wave-interference effects are taken into
account (that is, the intensity and radiance of the superposed
radiation is no longer a linear combination of the constituents’
intensity and radiance);

(3) Radiance is conserved along geometric rays in an optical
system (in absence of transmission losses).

Furthermore, the LTE remains a good approximation for physical
light transport when the electromagnetic nature of light plays no
major role. Hence, the LTE has been a cornerstone of modern com-
puter graphics for decades and those light transport principles were
employed by a vast body work.

Limitations. Nevertheless, as the electromagnetic nature of light
is ignored when formulating light transport under the constraints
of the LTE, all effects that arise from interference and diffraction
are neglected. Unfortunately, those limitations are inherit to the
formalism: It is well-known that this radiometric formulation is
inconsistent with Maxwellian electromagnetism [Wolf 1978] and,
as we shall formally demonstrate in Section 5, perfectly incoherent
light does not propagate and does not give rise to (far-field) radiation
fields! As a matter of fact, classical radiance, being a time-averaged
quantity that discards phase information, is not a fundamental prop-
erty of an electromagnetic wave (that is, a property that can not be
derived from more basic properties), or an ensemble of such waves,

Table 1. List of symbols and notation (location of definition on the right)

NOTATION AND SYMBOLS
Notation
®r Vectors: arrow accented boldface, typically lower-case latin letters
𝑟 = |®r| Vector’s magnitude: scalars sharing the same letter as a vector
r̂ = ®r/𝑟 Unit vectors: hat accented boldface
𝑨 Matrices and linear operators: boldface, capital letters
ℒ Operators: script, typically capital latin letters
®r′ Primed variables usually denote local or integration variables

Symbols
{x̂, ŷ, ẑ} The cartesian unit vectors spanningR3

®E Electric field (Page 5)
®B Magnetic field (Page 5)
𝑐 The speed of light
𝜆 Wavelength (Page 5)
®k Wavevector (Page 5)
𝑘 = 2𝜋

𝜆 Wavenumber (Page 5)
𝜔 = 𝑐𝑘 Wave’s angular frequency (Page 5)
J𝜈 Bessel function of the first kind of order 𝜈
𝒮
2 Unit sphere centred at the origin

Γ Mutual coherence function (Eq. (11))
W,𝒲 Cross-spectral density (scalar and matrix forms) (Eqs. (12) and (14))
L,ℒ RCSD: cross-spectral density with units of radiance (Eq. (18))

Operators
𝛿 (𝑥) Dirac delta
ℱ{·} Fourier transform operator (Eq. (1))
𝑧★ Complex conjugate of 𝑧 ∈ C
𝑨† Conjugate transpose of 𝑨
∗ Convolution operator
⟨·⟩ Ensemble average (Subsection 3.3)
⟨·⟩𝜔 Ensemble average over same frequency realizations (Subsection 3.3)
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and does not provide sufficient information to formulate the propa-
gation of the underlying electromagnetic field. Furthermore, there
is no way to glean the required information from a radiometric,
single-point description of light.

3.2 Electromagnetic Waves
We begin with a very brief overview of relevant Maxwellian elec-
tromagnetism. It is a well-known fact that observed light is elec-
tromagnetic energy, and optical phenomena are well described by
Maxwell’s phenomenological theory when the atomic structure of
matter plays no role [Born and Wolf 1999]. Hence, rigorous (classi-
cal) optical theories and results can always be traced to Maxwell’s
celebrated equations, which in free-space (away from charge and
current) and under Gaussian-cgs units take the following form:

∇ · ®E = 0 ∇ · ®B = 0 (4)

∇ × ®E = −1
𝑐

𝜕®B
𝜕𝑡

∇ × ®B =
1
𝑐

𝜕®E
𝜕𝑡

(5)

where 𝑡 is time and 𝑐 is the speed of light. The intrinsic electromag-
netic quantities are the vectors ®E and ®B, which are the electric and
magnetic fields, respectively. It is these fields that describe the in-
duced excitations in space, and the interaction between these fields,
quantified by Maxwell’s equations, results in self-supporting propa-
gating fields that oscillate in unison and give rise to time-harmonic
electromagnetic waves, i.e. light. Microscopic charge and current are
ignored as we focus on free-space propagation of light, and because
sourcing of natural light is better explained quantum mechanically
rather than classically (we will discuss sourcing in Section 5).
By taking the curl of each of the dynamic Maxwell equations

above (Eq. (5)) we arrive at the (homogeneous) wave equations
governing the propagation of electromagnetic waves:[

∇2 − 1
𝑐2

𝜕2

𝜕𝑡2

]
®E = 0

[
∇2 − 1

𝑐2
𝜕2

𝜕𝑡2

]
®B = 0 (6)

where ∇2 − 1
𝑐2

𝜕2

𝜕𝑡2
is known as the d’Alembert wave operator. Any

physically-realizable electromagnetic waves, formalised in terms of
their ®E and ®B fields, must satisfy Eqs. (4) and (6). For this reason, we
treat the set of equations above as the first principles of optics and
the foundations of physical light transport.
An important class of solutions to these equations are plane

waves, which are a form of transverse electromagnetic waves. Those
kind of waves admit simple and intuitive geometric and analytic
properties, making them ubiquitous in practical applications, like
computer rendering. A (monochromatic) plane wave takes the fol-
lowing form:

®E(®r, 𝑡) = ®a⊥𝑒𝑖 (®k·®r−𝜔𝑡 ) (7)

®B(®r, 𝑡) = −(k̂ × ®a⊥)𝑒𝑖 (®k·®r−𝜔𝑡 ) (8)

where ®a⊥ is a constant vector describing both the field’s peak ampli-
tude and the wave’s (linear) polarization direction, ®k is the wavevec-
tor—the plane wave’s direction of propagation—and its magnitude,
𝑘 = |®k| , is known as the wavenumber and is related to the wave-
length 𝜆 via the relation 𝑘 = 2𝜋/𝜆 . For a plane wave, in order to

satisfy Eq. (4), the wavevector must be perpendicular to the polariza-
tion direction, viz. ®k · ®a⊥ = 0. We also define the unit vector k̂ = ®k/𝑘
and 𝜔 = 𝑐𝑘 as the angular frequency. Observe that ®a⊥ and ®k fully
define a plane wave, with has important consequences for the study
of far-field propagation: the electric and magnetic fields do not need
to be quantified individually. Plane waves extend to infinity in the
transverse direction (perpendicular to the wavevector), hence are an
aphysical construct. Nonetheless, they are a good local approxima-
tion to “real” electromagnetic waves in a confined region of space,
far from the radiation’s source.
Our sensors that observe light (e.g., the eye, camera) measure

not the field strength but its intensity, and as these sensors observe
electromagnetic radiation over periods long with respect to the
angular frequency 𝜔 , it is the time-averaged quantities that are of
significance to us and not instantaneous values. For a plane wave,
the time-averaged intensity (irradiance impinging on a differential
surface area perpendicular to ®k, not to be confused with radiometric
intensity) becomes [Zangwill 2013]:

𝐼 (®r) = 𝑐

8𝜋 |®a⊥ |2 (9)

i.e. proportional to the field strength squared.

Limitations. The formalism briefly outlined above admits a few
major shortcomings frustrating its practical use in computer graph-
ics applications: First, apart from the most simple settings, solutions
to Eqs. (4) and (6) are difficult to compute; and, crucially, natural
light is not easily described by its electric and magnetic fields. The
last point arises from the fact that natural light is highly chaotic,
being composed of very many different electromagnetic waves of
distinct wavelengths, polarizations, field strengths and wavevec-
tors. Hence, even when tractable solutions are found, they fail to
account for that disorganized, i.e. incoherent, behaviour of natural
light, meaning that those solutions are typically only able to pre-
dict observable optical phenomena over very short spatio-temporal
lengths.

3.3 Wave Ensembles
The intricate inter-play between the electromagnetic wave con-
stituents that form natural light dictates how light energy propa-
gates and interacts with light and matter, and thus its observable and
measurable properties. Those constituents are typically numerous,
and as fluctuations at optical frequencies are not directly measured,
the observable quantities are time-averaged values. This prompts
us to shed a deterministic analysis in favour of a stochastic one.
Typically, a detailed study of each constituent is neither feasible
nor even desirable, instead we model light as an ensemble of very
many individual waves and study its statistics. This is the domain
of optical coherence theory, which can be thought of as the study of
the measurable quantities of optical phenomena, and this subsection
serves as background. Deep understanding of stochastic processes
or optical coherence theory is not required for this paper, therefore
we try to keep the discussion qualitative and as concise as possible.
The reader is encouraged to review Goodman [2015]; Wolf [2007]
or our supplemental material for a more complete and rigorous
discussion.
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A stochastic process is a functional analogue of a random variable.
While a random variable maps the sample space to a value, a stochas-
tic process is a mapping from the sample space to a function space.
Consider such a stochastic process, denoted𝑈 , describing the scalar
electromagnetic disturbances over spacetime. Being a scalar value,
polarization is ignored and only the field strength is considered.
This is done in-order to simplify the following discussion, however
a unified theory of polarization and coherence will be presented
later. The functions that 𝑈 maps to, i.e. the possible outcomes of
experiments that measure𝑈 , are functions from spacetime to scalar
real values describing field strength, and each is an appropriate
solution to Maxwell equations (up to a chosen field direction). We
call each such function a realization of the stochastic process, and
the collection—the ensemble—of all such realization together with
their joint probability density functions fully describes𝑈 .
A restricted class of stochastic processes, known as ergodic pro-

cesses, possess the propertywhere a single realization fully describes
the statistics of the entire process. That is, the expected outcome
of an experiment measuring 𝑈 , i.e. the ensemble average over the
entire ensemble of realizations, is equal to the infinite time-average
of a single realization. Formally, if we denote the ensemble average
of the signal 𝑈 as ⟨𝑈 (®r, 𝑡)⟩, then for ergodic processes it holds that

⟨𝑈 (®r, 𝑡)⟩ ≜ lim
𝑇→∞

1
2𝑇

∫ 𝑇

−𝑇
d𝑡 𝑈 (®r, 𝑡) (10)

Ergodicity applies similarly to higher-order moments: For an er-
godic process ensemble moments are equivalent to time moments.
Of particular importance is the second-order moment, the mutual
coherence function:

Γ(®r1, ®r2, 𝜏) ≜
〈
𝑈 (®r1, 𝑡)𝑈 (®r2, 𝑡 + 𝜏)★

〉
(11)

which describes the statistical similarity between the wave ensemble
at two different space points and with a time shift of 𝜏 . Note that
⟨𝑈 (®r, 𝑡)⟩ and in turn

〈
𝑈 (®r1, 𝑡)𝑈 (®r2, 𝑡 + 𝜏)★

〉
are independent of 𝑡 .

Consider a lamp producing polychromatic natural light: Typi-
cally, the expected observed instantaneous intensity at some point
is simply the average intensity over a single, sufficiently long mea-
surement. Furthermore, that measurement also fully captures the
source’s emitted spectra and the temporal coherence (the correla-
tion between the wave ensemble compared to a time-shifted version
of itself) at that point. Likewise, the (instantaneous) correlation
between waves reaching a pair of spacetime points would equal the
correlation between a pair of measured realizations at those points
(with the appropriate time-shift). That is, most physical processes
that are of relevance to us are indeed ergodic. Nevertheless, the
results in this paper apply, either directly or with some additional
work, to wide-sense stationary processes, a less restrictive class.
However, for simplicity, we make no formal distinction between
those classes of stochastic processes.

Space-frequency formulation. An important result in optical coher-
ence theory is the coherent-modes representation [Wolf 1982]: A con-
struction of an ensemble that consists of monochromatic waves that
is faithful to the original wave ensemble (that is, it describes the same
stochastic process). Such an ensemble of monochromatic waves can
be formally expressed as {𝑢 (®r, 𝜔)𝑒−𝑖𝜔𝑡 } with different values of
𝜔—the angular frequency—and where 𝑢 are the time-independent

realizations. Ensemble averages over such realizations give rise to
the primary quantity of interest, the cross-spectral density:

W (®r1, ®r2, 𝜔) ≜
〈
𝑢 (®r1, 𝜔)𝑢 (®r2, 𝜔)★

〉
𝜔 (12)

where the ⟨·⟩𝜔 operator should be read as “ensemble average over
same frequency realizations”, which implies the decomposition into
monochromatic waves. Physically, the cross-spectral density should
be understood as the correlation between same-frequency compo-
nents of the field (components that oscillate exactly as 𝑒−𝑖𝜔𝑡 with
respect to time) at two different space points. Mathematically, the
cross-spectral density is a positive semi-definite function that is
the spectral decomposition of the mutual coherence function, for-
mally W = ℱ{Γ} when the Fourier transform exists and with the
transform being with respect to time. It is noteworthy that such a
spectral decomposition into same-frequency waves always exists in
practice, and is established by the Wiener–Khinchin theorem (even
when the mutual coherence function is not Fourier-transformable)
[Goodman 2015].
In the far-field, the wave ensemble can be regarded as a collec-

tion of plane-waves with an essentially identical wavevector ®k, in
which case a realization𝑈 (®r, 𝑡) describes the instantaneous trans-
verse field strength and |®a⊥ | 2 =

〈
𝑈𝑈★

〉
(see Eq. (9)). Hence, as

the cross-spectral density is the spectral decomposition of the mu-
tual coherence function, it is easy to show that the time-averaged
observed intensity of the wave ensemble is

𝐼 (®r) = 𝑐

8𝜋 Γ(®r, ®r, 0) = 𝑐

8𝜋2

∫ ∞

0
d𝜔W (®r, ®r, 𝜔) (13)

which implies that distinct frequencies must be uncorrelated in an
ergodic wave ensemble, and we sum up those contributions inco-
herently. This makes the space-frequency formulation of optical
coherence of great convenience for our purpose: As typically is the
case with spectral rendering, we treat and render each spectral com-
ponent separately. To accurately reproduce diffractive phenomena,
statistical knowledge of the same-frequency constituents only is
sufficient, and different frequencies are summed up on an intensity
basis.

Polarization and coherence. So far in this section we have dis-
cussed a scalar wave ensemble. In order to achieve full agreement
with electromagnetism, we need to consider a stochastic process of
the vector field ®E(®r, 𝑡), which quantifies the electric field distribu-
tion over spacetime. This is done by decomposing a wave ensemble
into orthogonal transverse components and considering the second-
order statistics between these components. This gives rise to a 2× 2
matrix representation of the cross-spectral density, that describes
both the coherence and the polarization properties of the wave en-
semble, as well as the interactions between these properties. Assume
that the direction of propagation of the wave described by ®E is con-
centrated along the direction k̂. Denote {ê1, ê2} as the orthonormal
basis of the orthogonal complement of k̂, and let 𝐸1,2 = ê1,2 · ®E be
the mutually-orthogonal transverse components of the electric field
®E. Then, the cross-spectral density matrix is defined as [Wolf 2007]

𝒲 (®r1, ®r2, 𝜔) ≜
[
⟨𝐸1 (®r1)𝐸1 (®r2)★⟩𝜔 ⟨𝐸1 (®r1)𝐸2 (®r2)★⟩𝜔
⟨𝐸2 (®r1)𝐸1 (®r2)★⟩𝜔 ⟨𝐸2 (®r1)𝐸2 (®r2)★⟩𝜔

]
(14)
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When evaluated at ®r1 = ®r2, the matrix above is Hermitian and
positive semi-definite and thus fulfils the conditions of a polarization
matrix, sometimes referred to as the “coherency matrix” [Born and
Wolf 1999] (which is a misnomer as the polarization matrix provides
only single-point information). See Appendix A for a summary
of the properties of those matrices. The diagonal elements in the
matrix above express the coherence properties of the light, while
the off-diagonal elements describe the polarization characteristics.

It is noteworthy that the notation of 𝒲 abstracts the underlying
orthonormal basis that dictates the decomposition into transverse
components. Cross-spectral density matrices of the same wave en-
semble but expressed using different decomposition bases are all
linearly related to each other (see Section 7) and they encode the
same information. Nonetheless, some operators that act upon those
matrices expect a specific decomposition, consequently when deal-
ing with cross-spectral density matrices it is of necessity to bear in
mind that a decomposition basis is implied.

Discussion. Treating light as a stochastic process and committing
to a stochastic analysis gives rise to a formalism that can account for
the chaotic nature of natural light. The presented formalism models
the electromagnetic field disturbances as an ensemble of very many
realizations, each a solution to Maxwell’s homogeneous free-space
equations (Eqs. (4) and (6)) and by the superposition principle any
linear combination of those realizations is also a solution. A question
that is left to be answered is: are second-order statistics sufficient in
describing natural light? To see why that is truly the case, recall that
as already discussed, our sensors that observe light do so over long
periods. We are now in a position to elaborate on that statement:
If 𝑡 is the exposure time of a camera or the rendering time of a
frame, then in practice it would typically hold that 𝑡 ≫ 𝜏0, where
𝜏0 is the characteristic time-length of the observed light—more for-
mally, it is the period over which Γ(®r, ®r, 𝜏0) remains non-negligible.
Indeed, with W and Γ being Fourier-transform pairs, for natural,
wide-spectrum polychromatic light 𝜏0 would be small (direct cal-
culations show that 𝜏0 would be on the order of nanoseconds for
relevant blackbody radiation). Therefore, over the exposure time
many uncorrelated waveforms would contribute to the observed
intensity, and thus by the central limit theorem the observed in-
tensity is asymptotically (point-wise) normally distributed, and the
second-order moments are sufficient [Goodman 2015].

4 THE SPECTRAL-DENSITY TRANSPORT EQUATION
The cross-spectral density function encodes the spectral power
carried by the electromagnetic radiation as well as spatial correlation
information. To gain some insight into the cross-spectral density
function, consider a narrow beam of light emitted or scattered by a
surface patch 𝛿®p ⊂ R3 (the notation 𝛿®p is used to describe a small
two-dimensional patch or some small volume around the point
®p) and then propagated to a point ®r ∈ R3. Assuming the power
distribution across the beam’s cross section changes slowly (i.e.,
a quasi-homogeneous source), the cross-spectral density could be
decomposed as follows

W (®r1, ®r2, 𝜔) ≈ 𝐼 (®r, 𝜔)𝛾 (®r1, ®r2) (15)

for points ®r1, ®r2 close to ®r, i.e. ®r1,2 ∈ 𝛿®r. 𝐼 is the spectral power carried
by the beam and 𝛾 is a unit-less complex-valued spatial correlation
function, called the spatial degree-of-coherence, which fulfils: |𝛾 | ≤ 1,
𝛾 (®r1, ®r2) = 𝛾 (®r2, ®r1)★ and 𝛾 (®r1, ®r2) = 1 when ®r1 = ®r2. It is important
to note that this decomposition only serves an illustrative purpose
and in general such a decomposition is not possible. We do not use
this decomposition for our formal results but it is a useful way to
intuitively picture the cross-spectral density.

The cross-spectral density function is the ensemble average of the
mutual intensity of equal-frequency constituents of the coherent-
modes decomposition of a wave ensemble (Eq. (12)). Hence, akin
to time-averaged intensity of an electromagnetic wave (Eq. (9)),
the cross-spectral density quantifies directional power flow—the
electromagnetic fluxΦ impinging on a differential surface area d𝐴𝑟—
and has units of spectral power per area, i.e. spectral irradiance. The
differential surface area is trivially related to a differential solid angle,
subtended by 𝛿®r at the source ®p, via d𝐴𝑟 = 𝑟2 dΩ (with 𝑟 = |®r| , as
usual), thus

𝐼 =
𝜕Φ

𝜕𝐴𝑟
=

1
𝑟2

𝜕Φ

𝜕Ω
(16)

Differentiating by the projected area of the source 𝛿®p, denoted 𝐴𝑠 ,
we get

𝑟2
𝜕𝐼

𝜕𝐴𝑠 cos𝜃
=

𝜕2Φ
𝜕Ω𝜕𝐴𝑠 cos𝜃

(17)

where 𝜃 is the inclination angle. The right-hand-side is immediately
recognizable as spectral radiance (spectral power per solid angle per
projected source area). Thus, we define the radiance cross-spectral
density (RCSD) function as

L (®r1, ®r2, 𝜔) ≜ 𝑟2
𝜕W (®r1, ®r2, 𝜔)

𝜕𝐴𝑠 cos𝜃
(18)

and the matrix RCSDℒ is defined similarly. Substitute the decompo-
sition outlined in Eq. (15) into the definition of the RCSD, yielding
L = 𝐿𝛾 where 𝐿 is radiance. Indeed, the RCSD quantifies the power,
in-form of spectral radiance, carried by a wave ensemble as well as
the spectral spatial correlation. While that formal decomposition
generally does not exist, we will see later (when discussion sourcing
and propagation of the RCSD) that some of the convenient character-
istics of the classical radiometric radiance are preserved:L (®r, ®r, 𝜔) is
a non-negative real quantity that is conserved in free-space propaga-
tion. The RCSD should then be thought of as a function augmenting
classical radiance with a two-point spatial coherence information.
This two-point information is what enables this formalism to be
fully consistent with electromagnetism.
Consider a surface patch 𝛿®p with normal n̂. The irradiance, in

terms of a cross-spectral densitymatrix, impinging upon that surface
patch can be written as the superposition of the incident RCSD
matrices, viz.

𝒲
���®p =

∫
𝒮2

d2Ω′ ��Ω′ · n̂
��ℒ(𝑖)

®r′→𝛿®p (19)

where ℒ(𝑖)
®r′→𝛿®p is the RCSD of the incident radiation that arrived

from a point ®r′ (that lies in direction Ω′ from ®p). We are interested
in the RCSD of the radiation that scatters and propagates from
that surface patch. We will discuss propagation and diffraction in
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detail in the sections that follow, but for our current purpose it is
sufficient to introduce𝒟𝛿®p→𝛿®r: an abstract diffraction operator—the
“wave optics” generalization of the classical BSDF—that diffracts and
propagates the cross-spectral density on the surface patch 𝛿®p to a
region in space 𝛿®r. Then,

ℒ(𝑜)
®p→𝛿®r = 𝒟𝛿®p→𝛿®r

{
𝒲

���®p}
= 𝒟𝛿®p→𝛿®r

{∫
𝒮2

d2Ω′ ��Ω′ · n̂
��ℒ(𝑖)

®r′→𝛿®p

}
(20)

with ℒ(𝑜)
®p→𝛿®r being the quantity of interest: the RCSD of the radi-

ation scattered from ®p and propagated to region 𝛿®r. Making the
assumption that 𝒟 is a linear operator and formally interchange-
able with the integral in Eq. (20), we are now ready to formulate the
spectral-density transport equation (SDTE):

Definition 4.1 (Spectral-Density Transport Equation). The
SDTE governs the transport of light at the boundary be-
tween two media:

ℒ(𝑜)
®p→𝛿®r = ℒ(𝑒)

®p→𝛿®r +
∫
𝒮2

d2Ω′ ��Ω′ · n̂
��𝒟𝛿®p→𝛿®r

{
ℒ(𝑖)
®r′→𝛿®p

}
(21)

where ℒ(𝑒)
®p→𝛿®r is the RCSD of the radiation emitted from 𝛿®p.

Clear similarities can be drawn between the classical LTE (Eq. (3))
and the SDTE, both describe the local, directional behaviour of light
at an interface between media. We summarise the key differences:

(1) The SDTE deals with functions and not numeric values. For
this reason our formalism is described in terms of operators
that act upon those RCSD functions.

(2) While the LTE propagates values of radiance point-to-point,
an inherent fact of our formalism is that an RCSD function
describes information about the radiation within a small re-
gion in space, and propagation is between surface patches or
regions.

(3) The BSDF is replaced with a more general diffraction operator.
The superposition of RCSDs functions, as it appears in Eq. (19)

and in the SDTE, should be understood as a summation of contribu-
tions from statistically independent sources, and for each source we
integrate over the solid angle subtended by that source. Statistically
independent sources can be different primary light sources, or sec-
ondary sources (e.g., a scattering surface) that are far, with respect to
the spatial coherence of the light, from each other. For natural light,
where spatial coherence is measured in micrometres, “far” typically
refers to any supra-microscopic scales. We will formally show in
Section 6 that the RCSD of a superposition of radiation produced
by sources that are statistically independent is a linear combination
of the individual RCSDs.

We make the claim that the SDTE generalizes the classical LTE in
the short-wavelength limit: That is, the SDTE reduces to the LTE at
the limit 𝑘 → ∞ (with 𝑘 being the wavenumber). It is well-known
that this limit can also be considered as the “geometric optics” limit.
Intuitively this can be understood by observing that at the short-
wavelength limit any aperture or surface detail becomes infinitely

larger than the wavelength, effectively discarding diffraction effects
and, thus, light propagation adheres to geometric rays. Oncewe have
developed our theory, we return to this discussion in Appendix B
to formally show what that at the short-wavelength limit the RCSD
functions can be understood as classical radiance and thus verify
our claim.

5 SOURCING FROM NATURAL LIGHT SOURCES
In this section we analyze and define what constitutes a natural
light source as well as the radiation produced by such a source. A
variety of artificial and natural light sources produce essentially all
the light that we observe daily: Blackbody radiators, like the stars,
the sun and the filaments of incandescent bulbs, convert internal
thermal energy into electromagnetic energy; gas-discharge lamps
(e.g., fluorescent lamps, sodium-vapour lamps, neon lights and HID
lamps) emit light via gases excited by an electric current; light emit-
ting diodes (LEDs) produce light by passing electrons through a p-n
junction. The emission characteristics of those sources depend on
body temperature, gases used, substrate material and phosphors (if
any), and while the means used to generate light vary greatly, all
those types of sources share the same underlying physical process:
spontaneous emission. Spontaneous emission is a quantum mechani-
cal process where a particle—an electron, atom or a molecule—in
an excited state spontaneously undergoes transition to a lower en-
ergy state and emits the energy difference in form of a photon, in a
random direction and potentially after a short delay.

Those light sources, where light production is driven by sponta-
neous emission, are readily modelled as a large collection of elemen-
tary radiators, which are those electrons, atoms or molecules that
are excited by internal thermal energy, electric current, a chemical
reaction, or another mechanism. These elementary radiators ran-
domly and isotropically emit photons that give rise to the rather
chaotic polychromatic electromagnetic radiation that we term as
natural light—a core concept in our theory. We define a large collec-
tion of elementary radiators to constitute an idealised model of a
source producing natural light if the following holds:

(1) Radiation from elementary radiators does not interact with
the light source. In practice, photons that are produced by
radiators inside the source do interact with other particles,
such as electrons. However, such a photon will ultimately
escape the source, and thus we assume that those interactions
can be neglected when time-averaging.

(2) Each elementary radiator gives rise to isotropic, randomly po-
larized radiation (when time-averaged).

In addition, in order to simplify analytic derivations, we also assume
that (i) the source is homogeneous, i.e. all regions of the light source
radiate with identical power and spectrum; and (ii) that the source is
a perfect sphere. This implies that if different types of radiators are
present, e.g. different gases, then these are all spatially uniformly
and independently distributed within the source. A sphere is chosen
for its simplicity and generality. However, our framework can be
adapted to essentially any geometry in practice (see the derivations
our supplemental material).
Those assumptions do not always hold for real light source:

Voltage and temperature shift across the source, and especially
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o

®r

r
r̂1

r̂2
®r1

®r2𝛿®r

𝑆

Fig. 2. A spherical natural light source of volume 𝑆 is centred at the origin
o. The source consists of very many elementary radiators (illustrated as
red balls) that radiate isotropically (wavefronts illustrated as red curves).
This gives rise to the highly chaotic radiation that we call natural light.
To quantify the statistical properties of such light that has propagated a
distance 𝑟 to a small region 𝛿®r far from the source, we examine the statistical
similarity of the wave ensemble at some points ®r1 and ®r2 (in directions r̂1,
r̂2 from the center of the source) in that region.

towards the edges, producing spatially-varying emission charac-
teristics. Nonetheless, it is reasonable to assume that the spatially-
varying effects of certain sources usually have only a small impact
on the produced radiation: limb darkening and a drop in emission
power at the edge of the source can be accounted for by appro-
priately reducing the size of the model source. Those effects are
also source-dependent, and as our aim is to derive a general theory
that is applicable across a wide range of light sources, we choose to
ignore those spatially-varying peculiarities and leave discussion of
particular light sources for future work. Anyhow, we capture the
defining characteristic of all spontaneous emission natural sources:
a large collection of elementary radiators, collectively emitting light
but radiating independently [Guryev 2012], and we will show good
agreement with experimental data.

5.1 Model Radiation from Natural Sources
Having defined the model of a natural light source, we now turn our
attention to the emitted radiation. See Fig. 2 for an illustration of the
geometry. Each of the elementary radiators produces electromag-
netic radiation and the electromagnetic fields inside the source are
a superposition of all the fields produced by all the radiators. Our
goal is to find an expression for the RCSD ℒ of the fields that have
radiated away from the source. However, we are only interested
in the time-harmonic far-field radiation fields—that is, fields that
vary as 1/𝑟 , with 𝑟 being distance from the source (and thus the
intensity decays quadratically with distance). Therefore, we have
to solve a far-field diffraction problem, and to that end employ the
Rayleigh-Sommerfeld (scalar) diffraction integral of the first kind
[Born and Wolf 1999]:

𝑢 (®r) = 1
2𝜋

∫
Σ
d2®r′𝑢 (®r′)∇r̂

[
𝑒𝑖𝑘 |®r−®r′ |

|®r − ®r′ |

]
(22)

where Σ is a diffracting aperture (centred at the origin), as before
𝑘 is the wavenumber and ∇r̂ is the directional derivative in direc-
tion r̂, i.e. the direction of the point-of-interest ®r from the source.
A scalar diffraction formalism is sufficient because elementary ra-
diators radiate with random polarization. Applying Eq. (22) to the
definitions of the cross-spectral density (Eq. (12)) and the RCSD
(Eq. (18)), generalizing to a three-dimensional source (which should
be understood in the sense of Huygens’ principle: each elementary
radiator is source to spherical wavelets) and simplifying gives us
the scalar propagation equation for the RCSD (at normal inclina-
tion), which is immediately recognizable as a double (spatial) Fourier
transform:

ℒ (®r1, ®r2, 𝜔) = 1
𝜆2

𝑰𝑒𝑖𝑘 (𝑟1−𝑟2)

× 𝜕

𝜕𝐴𝑠

∫
𝑆
d3®r′1 𝑒−𝑖𝑘 r̂1 ·®r

′
1

∫
𝑆
d3®r′2W ′ (®r′1, ®r′2, 𝜔 )𝑒𝑖𝑘 r̂2 ·®r′2 (23)

where 𝜆 = 2𝜋
𝑘 is the wavelength, 𝑆 is the volume of the source, 𝐴𝑠

is the source area and 𝑰 is the identity matrix, which arises as the
source radiates with random polarization. See our supplemental
material for a detailed derivation of Eq. (23). The RCSD above is
defined for ®r1, ®r2 ∈ 𝛿®r for some point ®r away from the source.

Consider the quantityW ′ (®r′1, ®r′2, 𝜔 ) that appears in Eq. (23). This
is the cross-spectral density between the fields inside the source.
The number density of the elementary radiators is typically large
(e.g., roughly 1024m−3 for xenon in a high-pressure gas discharge
lamp [Murphy and Tam 2014]), hence by the time radiation emitted
from an elementary radiator propagates even a single wavelength,
it will have passed many other independently-radiating elementary
radiators. Therefore, it is reasonable to expect the cross-spectral
density inside the source to drop very rapidly to 0 as the distance
between the points ®r′1, ®r′2 increases. However, observe that if we
were to set W ′ (®r′1, ®r′2, 𝜔 ) = 0 for ®r′2 ≠ ®r′2 inside the source, then
Eq. (23) would yieldℒ ≡ 0 everywhere outside the source. With the
important theoretical conclusion being that incoherent radiation does
not propagate, and all the light we observe exhibits some degree of
optical coherence. Experiments performed by Carminati and Greffet
[1999] show that the near-field spatial coherence of natural light
is roughly half a wavelength. Therefore, we choose to model the
spatial correlation between the emitted fields inside the source as a
Gaussian with a deviation of half a wavelength:

W ′ (®r′1, ®r′2, 𝜔 ) = Λ(𝜔)𝑒−
1
2

[
( 12𝜆)−1 |®r′2−®r′1 |

]2
= Λ(𝜔)𝑒−

𝑘2 |®r′2−®r′1 |2
2𝜋2 (24)

where Λ(𝜔) is the power spectral density of the light source, i.e.
the spectrum of the emitted light. The exact shape and length of
the correlation inside the source is of little import, because those
characteristics only serve to scale the total emitted power, but do
not affect the coherence properties of the emitted light.

Let 𝜌 be the radius of the light source, and we assume that 𝜌 ≫ 𝜆,
i.e. the source extent is much greater than the wavelength. Then, the
Gaussian in Eq. (24) effectively constraints the integration volume
of the inner integral in Eq. (23) to a volume far smaller than 𝑆 . This
readily allows us to derive an accurate closed-form form expression
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for the sourced (and propagated) RCSD of the electromagnetic ra-
diation emitted by a spherical natural light source (we fold a few
constants into Λ for brevity and convenience):

Definition 5.1 (Incoherent Sourcing Operator). Given Λ, the
emitted power spectral density, and 𝜌 , the natural source
radius, the sourced RCSD is produced by the incoherent sourc-
ing operator as follows:

ℒ (®r1, ®r2, 𝜔) = 𝒮{Λ, 𝜌} ≜ 𝑰
Λ(𝜔)√

𝜌
𝑒𝑖𝑘 (𝑟1−𝑟2)

J3
2

[
𝜌𝑘 |r̂1 − r̂2 |

]
|r̂1 − r̂2 |

3
2

(25)

where J3
2
is the Bessel function of the first kind of order 3

2 .
The quantities 𝑟1,2 and r̂1,2 are with respect to the sourcing
point.

Note that the shape of the cross-spectral density function is influ-
enced neither by the power spectral density nor by the characteris-
tics of the spatial correlation of the fields inside the source, instead
it is dictated solely by the spatial distribution of the elementary
radiators. See our supplemental material for more details as well as
rigorous derivations of Eqs. (22), (23) and (25).

Looking at the limit ®r2 → ®r1, we observe that the radiance carried
by the RCSD formalised by Definition 5.1 is independent of the
distance 𝑟 , viz.

lim
®r2→®r

ℒ (®r, ®r2, 𝜔) = lim
®r2→®r

𝒮{Λ, 𝜌} ∝ 𝑰 𝜌𝑘
3
2Λ(𝜔) (26)

as expected. Also, by rewriting |r̂1 − r̂2 | ≈ sin𝛼 , where 𝛼 is the
separation angle between ®r1 and ®r2, we conclude that the absolute
value of the spatial degree-of-coherence of such radiation sourced
form a natural light source is then only a function of the separation
angle between the points and the wavenumber 𝑘 .

Analysis. The cross-spectral density expression above predicts
that light remains spatially coherent over a length inversely propor-
tional to the solid angle subtended by the source, which is consistent
with well-known theory and the Van Cittert–Zernike theorem [Born
and Wolf 1999]. If we were to plug a wavelength of 𝜆 = 0.50 µm, the
solar radius 𝜌 ≈ 696 000 km and the distance to earth’s surface from
the sun, 𝑟 ≈ 1 au, into Definition 5.1, and then solve for the first
zero of the Bessel function (≈ 4.49341), this would yield a coherence
radius of |®r1 − ®r2 | ≈ 77 µm, showing excellent agreement between
our model and experimental measurements performed by Mashaal
et al. [2012] of sunlight’s coherence on earth. Likewise, we also
found very good agreement with measurements of the coherence
of a white LED [Koivurova et al. 2017].
Our derivations employ far-field diffraction theory (Eq. (22))

that makes the paraxial approximation. To study the validity do-
main of this approximation, Charnotskii [2019] employ the Van
Cittert–Zernike theorem to compare the spatial coherence of spher-
ical incoherent sources calculated numerically with and without the
paraxial (far-field) approximation. For very small 𝜌 (source radii),
roughly 𝜌 ≤ 𝜆

2 , the radiation remains coherent across all space. This
fits our theory well: Such small sources will consist of few elemen-
tary radiators that all fall within the modelled spatial coherence

distance inside the source (Eq. (24)), giving rise to rather coherent
radiation. However, with just slightly larger sources, 𝜌 ≥ 2𝜆, and dis-
tances from the source of only 𝑟 ≥ 3

2𝜌 , the far-field approximation
begins to coincide virtually identically with the non-paraxial result.
This suggests that our derivations are applicable to essentially any
practical source size and distance from the source.

See Appendix B for a discussion of the short-wavelength limit of
the sourcing operator (Definition 5.1).

6 PROPAGATION AND DIFFRACTION
When electromagnetic waves encounter an obstacle, a brief chaotic
moment ensues during which the electromagnetic fields reorganize.
After that short instant of disarray, electric and magnetic fields
resume their mutual embrace, and carry energy away from the
obstacle in form of newly-formed time-harmonic electromagnetic
waves. This is known as diffraction, and a diffraction problem can
be formally stated as: Given a known distribution of the electro-
magnetic field in a confined region of space, a solution is sought
that extends that field to other regions while satisfying Maxwell’s
equations. That is, physical propagation of light and any scattering
and interaction of electromagnetic waves with matter and media
are in-fact diffraction problems (note that this is a broader definition
than typically followed in computer graphics). Indeed, in Section 5
we solved a simple scalar diffraction problem in order to derive an
expression for the cross-spectral density of the light sourced and
propagated from a natural light source. In this section we consider
the problem in its utmost generality and derive the propagation and
diffraction formula for the cross-spectral density.
After the brief instant of chaos that follows the disruption of

waves by an obstacle, far-field radiation fields materialize. Seek-
ing an analytic expressions for these fields we start with Smythe’s
diffraction formula, which is a diffraction integral formulated under
vectorized diffraction theory and in the far-field takes the following
form [Born and Wolf 1999]:

®E(®r) = 𝑖𝑘
𝑒𝑖𝑘𝑟

2𝜋𝑟 r̂ ×
∫
Σ
d2®r′⊥

[
n̂ × ®E(®r′⊥) ]𝑒−𝑖𝑘 r̂·®r′⊥

= 𝑖𝑘
𝑒𝑖𝑘𝑟

2𝜋𝑟 r̂ ×ℱΣ

{
n̂ × ®E

}
(r̂) (27)

where Σ is an “aperture”—a small planar region in space upon which
the electric field ®E is known, n̂ is the aperture normal and the (spatial)
Fourier transform is restricted to that aperture.We fix our coordinate
system such that Σ is centred at the origin. Becausewe employ vector
diffraction theory, we need to choose the transverse orthonormal
bases for our fields. For the incident field, i.e. the known field that
impinges upon the aperture, we assume decomposition under some
given basis {ê′1, ê′2}, with the implied assumption being that the
incident radiation is concentrated in some direction k̂′ and thus
ê′1 · k̂′ = ê′2 · k̂′ = 0 and naturally ê′1 · ê′2 = 0. Likewise, the arbitrary
orthonormal basis under which the propagated light is decomposed
is denoted as {ê1, ê2}, such that ê1 · r̂ = ê2 · r̂ = 0 as well as ê1 · ê2 = 0.
See Fig. 3 for an illustration. By making the Born approximation
[Zangwill 2013], the planar aperture can be immediately extended to
an arbitrary small volume. Physically, this should be understood in
the sense that an incident field induces electromagnetic excitations
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in that volume, and these excitations give rise to the superposition
of plane-wave modes described by the Fourier transform in Eq. (27).
This is a very good approximation when Σ is small and not a good
conductor.
Let the incident field’s cross-spectral density matrix be denoted

as 𝒲 ′. We are interested in deriving an expression for the cross-
spectral density matrix𝒲 of the radiation that diffracted and prop-
agated to ®r. An element W𝜉𝜁 (indexed by 𝜉, 𝜁 ∈ {1, 2}) of that
cross-spectral density matrix (Eq. (14)) can be written as

W𝜉𝜁 (®r1, ®r2, 𝜔) =
〈[
ê𝜉 · ®E(®r1)

] [
ê𝜁 · ®E(®r2)

]★〉
𝜔

(28)

We now apply the far-field Smythe’s diffraction formula, Eq. (27),
to each of the field components in the equation above. Exercising
some vector calculus, formally interchanging the orders of ensem-
ble averaging and integration and applying a series of elementary
algebraic manipulations finally yields the general formula for the
diffracted and propagated RCSD:

Definition 6.1 (Diffraction Operator). Let 𝒲 ′ be the cross-
spectral density function of the radiation that arises in a small
region Σ ⊂ R3. The RCSD of the diffracted and propagated
radiation is:

𝒟

{
𝒲 ′, Σ

}
≜

𝑒𝑖𝑘 (𝑟1−𝑟2)

𝜆2𝐴Σ
𝑯 1𝚿(r̂1, r̂2, 𝜔)𝑯𝑇

2 (29)

where 𝐴Σ is the cross-sectional area of Σ. The quantities 𝑟1,2
and r̂1,2 are with respect to the point subtending the RCSD.
The terms 𝑯 1,2 stand for the following shorthands

𝑯 𝑗 ≜

[ (
ê1 × r̂𝑗

) · (n̂ × ê′1
) (

ê1 × r̂𝑗
) · (n̂ × ê′2

)(
ê2 × r̂𝑗

) · (n̂ × ê′1
) (

ê2 × r̂𝑗
) · (n̂ × ê′2

) ] (30)

with the index 𝑗 ∈ {1, 2}. And, the matrix 𝚿 is the central
quantity of interest: the (double) two-dimensional Fourier
transform of the cross-spectral density matrix on the diffract-
ing region, viz.

𝚿(r̂1, r̂2, 𝜔) ≜
∫
Σ
d3®r′

∫
Σ
d3®r′′𝒲 ′ (®r′, ®r′′, 𝜔 )𝑒−𝑖𝑘 (r̂1 ·®r′−r̂2 ·®r′′)

= ℱΣ
{
ℱΣ

{
𝒲 ′ (®r′, ®r′′, 𝜔 )} (−𝑘 r̂2)} (𝑘 r̂1) (31)

It is easy to verify that both 𝚿(r̂, r̂, 𝜔) and, in turn, the RCSD
produced by the diffraction operator are polarization matrices (see
Appendix A), as expected. See our supplemental material for detailed
derivations of Eq. (27) andDefinition 6.1. Definition 6.1 is an accurate
far-field diffraction and propagation formula for the cross-spectral
density matrix of light of any state of coherence, polarization and
spectrum, diffracted by a small region in space, under the context of
full electromagnetism. To our knowledge, this expression has not
been previously derived.
Note that under the highly general diffraction formulation that

was discussed in this section, the radiance carried to the far-field
by the diffracted RCSD conveniently does not depend on 𝑟 . Further-
more, 𝚿, and in turn the absolute value of the spatial degree-of-
coherence, is only a function of the directions r̂1,2, in contrast to
the points ®r1,2, indicating again that spatial coherence stems from
propagation.

Σ
W ′

ê′2

k̂′

ê′1

ê2

k̂ = r̂
ê1 ®r

r

W

r̂1

r̂2

®r1

®r2

𝛿®r

Fig. 3. Diffraction of natural light by an obstacle Σ. The obstacle may be any
matter or medium or, equivalently, an opening in a conductive screen (i.e.
an aperture). An incident field (wavefronts illustrated as red lines), with its
coherence properties quantified by𝒲′, induces electromagnetic excitations
in Σ (small purple balls), giving rise to diffracted radiation (wavefronts
illustrated as purple lines). The solution to the diffraction problem is then
𝒲 , which quantifies the diffracted wave ensemble that has propagated to
some point ®r. The wavevectors k̂ and the orthonormal bases ê are illustrated
as well. Note, as the diffracted wave ensemble propagates the wavefronts
become more similar, illustrating that light gains coherence on propagation.

Superposition of light of any state of coherence. Assume that light
from two different sources (primary or secondary) is superposed,
with the sources being Σ1 and Σ2, assumed to be disjoint. We study
the diffracted RCSD by applying the diffraction formula (Defini-
tion 6.1) to the diffracting region Σ = Σ1∪Σ2. The matrix𝚿 (Eq. (31))
then can be written as:

𝚿 =
∫
Σ

∫
Σ
𝒲 ′ (®r′, ®r′′, 𝜔 )𝑒−𝑖𝑘 (r̂1 ·®r′−r̂2 ·®r′′⊥)

=
∑︁
𝜉,𝜁

∫
Σ𝜉

∫
Σ𝜁

𝒲 ′ (®r′, ®r′′, 𝜔 )𝑒−𝑖𝑘 (r̂1 ·®r′−r̂2 ·®r′′⊥) (32)

with 𝜉, 𝜁 ∈ {1, 2} being indices. The above is trivially extended to
any number of sources. Clearly, if the distance between a pair of
sources Σ𝜉 and Σ𝜁 is large, with respect to the distances over which
light remains spatially coherent, then 𝒲 ′ (®r′, ®r′′, 𝜔) ≈ 0 whenever
𝜉 ≠ 𝜁 . In that case, we say that the the sources are statistically
independent, and the sum in Eq. (32) reduces to a sum over 𝜉 = 𝜁
only. Hence, the RCSD of the superposed radiation is simply the
linear combination of the RCSDs of the light from each source.

Scalar and vector diffraction treatment. We choose to employ a
rigorous vector formalism, both for our discussion of diffraction and
our entire framework. This is justified by ourmotivation to develop a
general-purpose theory applicable to a wide variety of applications.
A quick comparison of our derived diffraction formulae for the
scalar and matrix RCSDs, reveals that Definition 6.1 is equivalent
to its scalar counterpart, Eq. (23) (where in general we need to also
account for inclination), only at normal incidence and when r̂ ≈ n̂.
In which case it can be shown that indeed 𝑯 1,2 ≈ 𝑰 . However, away
from normal incidence and exitance, the vectorized theory provides
a more accurate formalism. Under this vectorized formalism the
polarization state of the wave ensemble becomes a first-class citizen,
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which is important as polarization plays a crucial role in many
light-matter interactions and applications.

Helmholtz Reciprocity and the Short-Wavelength Limit. A defining
property of the classical BSDF 𝑓𝑟 is reciprocity, which can be for-
mally stated as 𝑓𝑟 (Ω𝑖 ,Ω𝑜 , 𝜔) = 𝑓𝑟 (Ω𝑜 ,Ω𝑖 , 𝜔). In our supplemental
material we show that the “geometrical” terms in the diffraction
operator, i.e. all the terms except the matrix 𝚿, do adhere to that
notation of reciprocity. Clearly, however, 𝚿 which describes the
diffraction process is not reciprocal, and indeed physical optics does
not admit that property. Nonetheless, we state without proving that
reciprocity is retained across sufficiently large solid angles.

Furthermore, in Appendix B we also discuss the short-wavelength
limit of the diffraction formulae derived above, and we show that
under that limit energy diffracts and propagates along rays, in line
with “geometrical optics”. We also conclude that in that limit, the
diffraction operator does indeed obey the classical reciprocity con-
dition.

7 LIGHT-MATTER INTERACTION
In this section we discuss and formalise a few simple cases of light-
matter interaction. We start with arguably the most fundamental
operation in imaging and computer graphics: the measurement of
the intensity of light incident upon a sensor. In practice, light is mea-
sured by a photodetector (or, typically, an array of such detectors
which together constitute a camera’s sensor) or biological photore-
ceptors. Those detectors respond to an incident electromagnetic
flux, and have varying sensitivity as a function of wavelength.

Definition 7.1 (Measurement Operator). Let ℒ be an incident
RCSD, and 𝜒 (𝜔) the responsivity curve of the measurement
device. Then, the observed radiance at a point ®r is

ℒ{ℒ, 𝜒, ®r} ≜ 𝑐

8𝜋2

∫ ∞

0
d𝜔 𝜒 (𝜔) trℒ (®r, ®r, 𝜔) (33)

As discussed in Subsection 3.3, the integrals
∫
L(®r, ®r, 𝜔) and∫

trℒ(®r, ®r, 𝜔) compute time-averaged quantities, which are exact
when averaging over a 𝑇 → ∞ period of time and in the far-field
(plane wave) limit. For polychromatic natural light, which exhibits
very short temporal coherence lengths, Definition 7.1 is an excellent
approximation. However, when dealing with quasi-monochromatic
radiation that gives rise to significant coherence times, or when
rendering images with ultra-low exposure time (as is done by, e.g.,
Jarabo et al. [2014]), the assumption that we average over infinite
time no longer holds. In such a scenario we would be forced to
consider the higher-order statistics of the wave ensemble, which is
beyond the scope of this paper.

Jones calculus operators. When dealing with perfectly coherent
light, a well-studied optical formalism, known as Jones calculus, is
sufficient to model many simple light-matter interactions, such as
basic reflection and refraction of smooth surfaces, phase retarders
like quarter- and half-wave plates and polarizers. Under that for-
malism, the transverse components of a coherent electromagnetic
wave are represented using a Jones vector, a 2-dimensional complex
valued vector [ 𝐸′

1 𝐸′
2 ]𝑇 , and light-matter interactions are modelled

via Jones matrices—2 × 2 complex matrices that model an optical
element and act upon those Jones vectors. We can introduce those
Jones matrices directly into our formalism:

Definition 7.2 (Jones Calculus Operator). Let 𝑨 be a Jones
matrix representing an optical element. Then, the action of
that optical element upon a wave ensemble is described via
the following operator

𝒥𝑨{ℒ} ≜ 𝑨ℒ𝑨† (34)

The correctness of the above stems from the following analysis:
Let𝑨 =

[
𝑎𝜉𝜁

]
(𝜉, 𝜁 ∈ {1, 2} are indices) be a Jones matrix, let 𝐸 ′1,2 be

the transverse components of a realization of a wave ensemble and
denote 𝐸1,2 as the components of the realization after interaction
with the optical element (that is, after being acted upon by𝑨). Then,

L𝜉𝜁 =
〈
𝐸𝜉𝐸

★
𝜁

〉
𝜔
=

〈(
𝑎𝜉1𝐸

′
1 + 𝑎𝜉2𝐸

′
2

) (
𝑎𝜁 1𝐸

′
1 + 𝑎𝜁 2𝐸

′
2

)★〉
𝜔

=
∑︁

𝑝,𝑞∈{1,2}
𝑎𝜉𝑝 L′

𝑝𝑞 𝑎
★
𝜁𝑞 (35)

where L′
𝑝𝑞 =

〈
𝐸 ′𝑝𝐸 ′𝑞★

〉
𝜔
and L𝜉𝜁 are elements of the RCSD matri-

ces of the radiation before and after the interaction, respectively.
Finally, it is easy to verify that the RCSD produced by the operator
above is Hermitian and positive semi-definite, when evaluated at
®r1 = ®r2, and thus is indeed a polarization matrix.

Note that Jones calculus deals exclusively with perfectly coherent
radiation. However, by acting upon each realization of a wave en-
semble (as formalised by Eq. (35)), we have shown that that domain
of validity can be extended (via Definition 7.2) to light of any state of
coherence and polarization. A few other useful matrices that model
specific cases of reflections and refractions will be introduced in the
rest of this section.

Basis rotation. Before we proceed with additional light-matter
interaction operators, note that, as discussed, RCSDs of the same
wave ensemble expressed under different decomposition bases yield
different matrices. Evidently, operators formulated via Jones matri-
ces are sensitive to that choice of basis. As a consequence, a change
of basis of an RCSD matrix is a common practical need and it can
be easily accomplished by the use of a simple rotation matrix

𝑹𝜃 =

[
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

]
(36)

where 𝜃 is any (counter-clockwise) rotation angle. 𝑹𝜃 is a Jones
matrix, therefore basis rotation of an RCSD is done via the corre-
sponding operator 𝒥𝑹𝜃

(Definition 7.2).

7.1 Reflection and Refraction Operators
The well-known Fresnel equations relate the amplitudes of an inci-
dent field to the reflected and refracted fields at an interface between
a pair of media. These relations have seen wide application in the
realm of computer graphics, therefore we provide only a brief sum-
mary of the Fresnel equations in Appendix C and in this subsection
we proceed to present their application under our formalism. We
assume that the RCSD matrix of the radiation incident upon the
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surface is decomposed using an s-polarization (where the field is
strictly perpendicular to the plane of incidence) and p-polarization
(where the field is strictly parallel to the plane of incidence) ba-
sis. Then, the physical properties of the interface give rise to the
Fresnel coefficients, which also depend on the incidence angle: 𝑟𝑠,𝑝 ,
which are the amplitude-ratios of the reflected s- and p-polarized
fields, respectively, and 𝑡𝑠,𝑝 , the amplitude-ratios for the refracted s-
and p-polarized fields, respectively. Clearly, the diagonal matrices
𝑹 = diag

{
𝑟𝑠 , 𝑟𝑝

}
and 𝑻 = diag

{
𝑡𝑠 , 𝑡𝑝

}
are Jones matrices describing

the action of the interface. Due to their importance we choose to
define dedicated Fresnel reflection and refraction operators:

Definition 7.3 (Fresnel Reflection and Refractions Operators).
Let ℒ be the RCSD impinging upon an interface between
two media. Then, the reflected RCSD is

ℛFresnel{ℒ} ≜ [ 𝑟𝑠
𝑟𝑝
] ·ℒ · [ 𝑟𝑠 𝑟𝑝

]† (37)
and the refracted RCSD is

𝒯Fresnel{ℒ} ≜
[
𝑡𝑠

𝑡𝑝

]
·ℒ ·

[
𝑡𝑠

𝑡𝑝

]†
(38)

It is assumed that the cross-spectral density matrix ℒ is
formulated with respect to a decomposition into s- and p-
polarized incident waves.

The Church polarization factor. While the Fresnel equations are
formally exact, their use implies the assumption that the surface is
perfectly smooth. Of practical interest are a set of similar equations
that take residual surface roughness into account. These relations
appear to have been first derived in the modern radar scattering
literature by Ruck [1970], and introduced into applied optics and
surface scattering by Church et al. [1977]. They were later borrowed
by the Rayleigh-Rice small perturbation surface theory as well as
the Harvey-Shack generalized scattering theory, and have also seen
some use in computer graphics [Holzschuch and Pacanowski 2017].
The Church polarization factor consists of four complex-valued

coefficients, which are the amplitude-ratios between the incident
and the scattered s- and p-polarized fields and together give rise to
the Jones matrix 𝑸 .

Definition 7.4 (Church Reflection Operator). With ℒ being
the incident RCSD, the reflected RCSD under the Church
reflection formulation is

ℛChurch{ℒ} ≜ 𝑸 ℒ𝑸† (39)
Decomposition into s- and p-polarized waves is assumed.
The formulae for the matrix 𝑸 as well as the Church polar-
ization coefficients are detailed in Appendix D.

8 APPLICATIONS AND VALIDATION
In this section we present a couple of sample applications of our
framework as well as validate our derivations.

8.1 Rendering Diffractions on Surface Scattering
We consider the case of scatter of partially-coherent light by an
explicitly defined microscopic patch of surface. Consider a surface

described by some height function, ℎ : Σ → R, where the height
deviations are from the mean surface plane, Σ ⊂ {𝑧 = 0}, assumed
to be located on the 𝑥𝑦-plane and centred at the origin. The surface
normal is then n̂ = ẑ, and we denote a point on the surface as
®r′ = ®r′⊥ + ℎ(®r′⊥)n̂, with ®r′⊥ ∈ Σ being a point on the mean surface
plane. Assume that radiation arrives from a natural light source
of radius 𝜌 , emitted power spectral density Λ and position ®s. We
would like to measure the observed intensity of light scattering of
the surface patch and arriving at an imaging device (pinhole camera
for simplicity) at position ®e.

Applying the SDTE (Definition 4.1), our quantity of interest can
be written as

𝐿 = ℒ

{∫
𝒮2

d2Ω′ ��Ω′ · n̂
��𝒟{

𝑒𝑖𝑘 (Ω
′+ê) ·(®r′−®r′′)

ℛ

{
𝒲 ′ (®r′, ®r′′, 𝜔 )}}}

(40)

where ℒ is the radiance measurement operator (Definition 7.1),
®r′, ®r′′ are points on the surface,𝒟 is the diffraction operator (Defi-
nition 6.1) that operates with respect to the points ®r′, ®r′′ and ℒ′ is
the RCSD sourced from incident direction Ω′. For simplicity and
in a like manner to the Harvey-Shack surface scatter theory [Kry-
wonos 2006], we assume that the reflected field strength ratio is
constant across the surface patch and apply the Church reflection
operatorℛ (Definition 7.4) to the incident RCSD. When the char-
acteristic size of the surface patch is large compared to the height
fluctuations described by the function ℎ, the surface can be consid-
ered as a diffracting aperture. The familiar wave propagation term,
exp [𝑖𝑘 (Ω′ + ê) · (®r′ −®r′′)], that appears in Eq. (40), can be regraded
as the propagator that propagates incident waves to the mean plane
Σ, taking the height fluctuations into account. We refer to it as the
frequency transmission function [Born and Wolf 1999] that arises
due to residual surface roughness. This expression can also be found
in other related works that deal with rendering surface-induced
diffractions [Holzschuch and Pacanowski 2017; Krywonos 2006; Yan
et al. 2018].
Making the small-angle paraxial approximation and a few alge-

braic simplifications allows us to write the (far-field) coherence
properties of the incident radiation (that is, the non-constant and
non-phase terms in Definition 5.1) as

P (®r′⊥ − ®r′′⊥, 𝜔
)
≜

𝑠
3
2 J3

2

[
𝜌𝑘
𝑠

��Ω′ × (®r′⊥ − ®r′′⊥
) ��]��Ω′ × (®r′⊥ − ®r′′⊥

) �� 32 (41)

with 𝑠 being the distance to the light source from the surface patch.
The above expression is termed the impulse response function in-
duced by incident the wave ensemble. The frequency transmission
function fully quantifies the height fluctuations of the surface ge-
ometry, while the impulse response function serves as a complete
description of the incident light’s coherence properties on the sur-
face. Together, they supply the information necessary to compute
the diffracted wave ensemble’s RCSD function.

In the far-field, i.e. 𝑠 ≫ 𝜌 , a long, but straightforward, derivation
(see our supplemental material) yields a simplified expression for
the observed intensity of partially-coherent light reflected from the
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Fig. 4. (a) Topology of a uniformly scratched, moderately rough aluminum surface that is used to render (b) BRDF visualizations (normalized intensity) of the
diffraction effects that arise when natural, partially-coherent light scatters of that surface. Illumination is done by a D65 light source of radius 8mm that is
positioned directly above the surface. By varying 𝑠 , the distance of the source from the surface, we change the coherence properties of the incident wave
ensemble, resulting in starkly different scattering behaviour.
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Fig. 5. (a) An aluminum surface that has undergone electric polish resulting in low intrinsic roughness and highly anisotropic details. (b) BRDF visualizations
(normalized intensity) under partially-coherent illumination produced by a fluorescent F1 model light source at various distances to the surface.
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Fig. 6. (a) A sandpaper polished gold surface with isotropic statistics. (b) We vary the height multiplier of the surface, ℎ, to compare the generated BRDFs
(D65 illuminant and with intensity normalized) between different levels of roughness: For a very smooth surface (on the left), the only visible details are the
reflection of the light source, as expected, and as we increase the roughness (left to right) isotropic surface diffraction effects appear.

surface patch:

𝐿 =
Θ√
𝜌

1
𝐴Σ |ê · n̂|

∫ ∞

0

d𝜔
𝜆2

Λ(𝜔)

× tr
[
𝑯 1𝑸 (𝑯 2𝑸)†

] (
T 2 ∗ℱ{P}

)
(𝑘 ê) (42)

where Θ = 2𝜋/𝑠 (𝑠 −
√︁
𝑠2 − 𝜌2) is the solid angle subtended by the

source and the Fourier transform of the impulse response function,
ℱ{P}, is with respect to the variable ®d′ = ®r′⊥ − ®r′′⊥. The quantity
T 2 ( ®𝜉) is denoted as the frequency response function and is the com-
plex magnitude squared of the Fourier transform of the frequency
transmission function, viz.

T 2
(
®𝜉
)
≜
���ℱΣ

{
𝑒𝑖𝑘 (Ω

′+ê) ·[®r′⊥+n̂ℎ (®r′⊥)]
}
( ®𝜉)

���2 (43)

where the Fourier transforms is confined to Σ and is with respect
to the variable ®r′⊥ ∈ Σ. Eq. (42) expresses a two-dimensional con-
volution of the Fourier transform of the impulse response function
with the frequency response function. Note that the impulse re-
sponse function P is a symmetric real function, therefore its Fourier
transform is real. Likewise, the frequency response function T 2 is
evidently real. Therefore, the double Fourier transform expression
above is real as well, as expected.

We have shown in this section that under general conditions the
scattered RCSD can be accurately formulated as the convolution
between a function describing the coherence properties of the inci-
dent wave ensemble and a function describing the surface-induced
perturbations. Some parallels can be drawn between this conclu-
sion and known results in optics regarding transmission of mutual
intensities through an optical system [Born and Wolf 1999].
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Numeric evaluation. The evaluation of Eq. (42) will typically be
done numerically, and it is more suitable to rewrite the convolution
as multiplication in Fourier space, viz.

T 2 ∗ℱ{P} = ℱ
{
ℱ

-1{T 2} · P}
(44)

Then,ℱ-1{T 2} is evaluated via a pair of fast Fourier transforms
(FFT). Only a single frequency of the last transform is needed, thus
the Goertzel algorithm (generalized to arbitrary frequencies [Sysel
and Rajmic 2012]) is used as it is faster, compared to an FFT, and
provides a sinc interpolated result.

Using the theory derived above BRDF lobes visualizing the scatter
of a few sample surfaces were rendered, see Figs. 4 to 6. Additional
results, as well as a comparison with Yan et al. [2018], are available
in our supplemental material. Furthermore, we have rendered more
complete scenes showing a few diffractive surfaces, Figs. 1 and 8.
See Subsection 8.4 for more details regarding the rendering of these
scenes as well as discussion about integration of our framework
into a path tracer.

8.2 Validation
The results derived in Subsection 8.1 serve as a convenient and
simple test bed to validate our formalism. We produce a ground
truth by solving the surface scatter problem using classical coherent
diffraction theory for each elementary radiator in our natural light
source. Each elementary radiator can be readily considered as a point
source, therefore it produces perfectly spatially-coherent radiation
and we use the Smythe’s diffraction formula (Eq. (27)) to evaluate
the surface scattered radiation for a single elementary radiator.
This makes for a good validation, as: (1) the Smythe diffraction
formula is a virtually exact solution to Maxwell’s equations in the
far-field [Zangwill 2013]; and (2) the ground truth is devoid of any
optical coherence formalism. Thus, we are validating the derivations
performed in Sections 4 to 6.
Because a high density of elementary radiators is required, nu-

merical evaluation of the ground truth using classical diffraction
theory is exceedingly expensive and only feasible in flatland. We
employ a natural light source with a radius of 𝜌 = 1mm and with
elementary radiators spaced at 8 µm intervals (the density in a real
natural source would be greater, however this is sufficient for con-
vergence), implying a light source composed of 49 089 elementary
radiators. Note that inR2 the derivations in Subsection 8.1 change
very slightly due to the source’s geometry now being a disk instead
of a ball. The rest of the analysis remains the same. Validation results
are plotted in Fig. 7, and very good agreement is demonstrated. The
small errors (absolute deviations from the ground truth of a few
percent) are mostly due to numeric reasons. The computation time
required to render a 1024 pixel flatland BRDF using a modern desk-
top computer is a fraction of a second using our method, but over
a couple of hours for the ground truth. Derivations of the ground
truth formulae as well as additional validation results are available
in our supplemental material.

8.3 Partially-Coherent Radiative Transfer
The radiative transfer equation (RTE) can be traced back to Chan-
drasekhar [1960]; Lommel [1889] and provides a physical basis for

light transport in participating media. The steady-state, isotropic
RTE that commonly appears in computer graphics literature is a
integro-differential equation that governs the distribution of radi-
ance 𝐿 in a participating medium:

∇Ω𝐿(®p,Ω) =𝜎𝑠
∫
𝒮2

d2Ω′ 𝑓𝑝
(
Ω,Ω′)𝐿 (®p,Ω′)

+ 𝜎𝑎𝐿𝑒 (®p,Ω) − (𝜎𝑠 + 𝜎𝑎)𝐿(®p,Ω) (45)

with ∇Ω being the directional derivative, ®p a point in the medium,
Ω a direction, 𝜎𝑎 and 𝜎𝑠 the (possibly spatially varying) absorption
and scattering coefficients (units of reciprocal length, i.e. the total
absorption or scattering cross section over volume), respectively,
and 𝑓𝑝 the scattering phase function (assumed to be normalized).
The dependence on wavelength of all quantities is implied. In an
analogous fashion to our derivation of the SDTE (Definition 4.1),
we replace the phase function-driven scattering of radiance above
with an abstract diffraction operator:

Definition 8.1 (Spectral-Density Radiative Transfer Equation).
For a homogeneous, isotropic medium the equation govern-
ing the distribution of the RCSD is

∇Ω ℒΩ =𝜎𝑠

∫
𝒮2

d2Ω′
𝒟Ω′→Ω{ℒΩ′}

+ 𝜎𝑎 ℒ(𝑒)
Ω −(𝜎𝑠 + 𝜎𝑎)ℒΩ (46)

where 𝜎𝑎 = 2𝑘𝜅, with 𝜅 being the imaginary part of the
medium’s refractive index, is the absorption coefficient that
arises due to the medium’s conductivity and𝒟 quantifies the
interaction of light with the participating medium. The posi-
tion and wavelength dependences are omitted for brevity.

As with the SDTE, the equation above should be understood in the
sense of propagation of independent beams of light, in contrast to
rays. The spectral-density radiative transfer equation is an integro-
differential equation that formalises the volumetric light transport
under our formalism, and the SDTE (Definition 4.1) serves as its
boundary condition.

Rayleigh scattering. Finding analytic solutions to the radiative
transfer diffraction problem that arises above can be difficult. We
restrict ourselves to the simplest case of scattering by very small
(with respect to wavelength) spherical particles in a homogenous
medium, i.e. Rayleigh scattering. Because the particles are small,
an incident electric field, ®E′, is almost constant across a scattering
particle, leading to a quasistatic approximation. Thus, the scatter-
ing is dominated by the time-harmonic dipole moments that arise
[Zangwill 2013]. These dipoles produce a far-field electric field ®E,
whose field strength is related to the incident field’s strength as
follows:

𝑟2
���®E���2 = 𝜎𝑠𝑘

4 (1 +
��Ω · Ω′��2)���®E′���2 (47)

where the constant 𝜎𝑠 depends on the medium’s electric polariz-
ability and particle size and 𝑟 is the propagated distance from the
particle. The total scattering cross section is then 16𝜋

3 𝜎𝑠𝑘
4. The

scattering region in the medium is typically large with respect to
the spatial coherence of the incident light and contains very many
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Fig. 7. Numeric validation of our method in flat-land for the (a) scratched surface (see Fig. 4) and (b) polished gold surface (see Fig. 6). The radius of the
light source is 1mm and the ground truth is generated using 49 089 elementary radiators. Rendering was done using 32 spectral samples. For each surface:
(first row) we compare each primary colour component by plotting results computed using our method (solid plots) against the ground truth (dashed plots);
similarly, (second row) we compare the total luminance and also plot the absolute luminance difference (in dash-dotted red) as well as the RMSE.

scattering particles. This is a similar situation to sourcing from a
natural light source (Section 5): The scattering particles act as ele-
mentary radiators (with a radiation differential cross section that is
no longer isotropic, but described by Eq. (47)) and the correlation
between the produced fields depends on the coherence properties of
the incident light. We make the approximation that the scattering
region is much greater than the distance over which the incident
light remains coherent, this implies that the scattering region acts
as a perfect diffuser and the transfer equation becomes (neglecting
emission)

∇Ω ℒΩ =𝜎𝑠𝑘
4
∫
𝒮2

d2Ω′
(
1 +

��Ω · Ω′��2)𝒮{
Λ′, 𝜌

}
−
(
16𝜋
3 𝜎𝑠𝑘

4 + 𝜎𝑎

)
ℒΩ (48)

where𝒮 is the sourcing operator (Definition 5.1) andΛ′ is the power
spectral density of the radiation incident from direction Ω′. That is,
the scattering medium acts as a secondary light source.

8.4 Rendering and Implementation
The scene rendered in Fig. 8 demonstrates diffractive effects aris-
ing on scattering of brushed aluminum and scratched copper bars.
Furthermore, Fig. 1 showcases an example of the global effects of
optical coherence: As light passes through a vase filled with water,
it is diffused and gives rise to weaker interference patterns. As de-
scribed in Subsection 8.3, the scattering water can be thought of as a

(a)

(b)

(c)

Brushed (Al)

Scratched (Cu)
“geometric”

“wave”

(a)

(b)

(c)

Brushed (Al)

Scratched (Cu)
“geometric”

“wave”

(a)

(b)

(c)

Brushed (Al)

Scratched (Cu)
“geometric”

“wave”

(a)

(b)

(c)

Brushed (Al)

Scratched (Cu)
“geometric”

“wave”

(a)

(b)

(c)

Brushed (Al)

Scratched (Cu)
“geometric”

“wave”

(a)

(b)

(c)

Brushed (Al)

Scratched (Cu)
“geometric”

“wave”

(a)

(b)

(c)

Brushed (Al)

Scratched (Cu)
“geometric”

“wave”
Fig. 8. A scene illuminated by three white natural sources of diameters
(right to left) 0.10mm, 1mm and 1 cm, positioned about 6 cm above bars
made of (a) brushed aluminum and (b,c) isotropically scratched copper.
The scratches on the bottom copper bar (c) are rendered using our method,
while the top copper bar (b) is rendered using “geometric optics” only for
comparison. Interference effects are most visible when reflecting the more
coherent light from the smallest source. Magnification insets are drawn at
the bottom (colour coded).

large, and hence less optically coherent, secondary light source. The
bars in Fig. 8 as well as the statue and the lamp head in Fig. 1 are
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rendered using precomputed data of Eq. (42) for various scattering
directions and values of 𝑟—the distance of travel of the beam of
light from the source. The other surfaces are rendered classically.
It is assumed that reflections and refractions of smooth surfaces
(the glass, plastic surfaces and other conductors) do not affect the
coherence properties of light, i.e. the interactions are fully described
by the Fresnel relations (Definition 7.3). The rough surfaces are
assumed to fully diffuse the light, meaning they act as secondary
natural sources. In practice, when tracing rays we track the travel
distance from the light source, and water scatter events or reflec-
tions of a diffuse surface reset that travel distance to zero. Thus, in
our implementation, the coherence properties of a light beam only
depend on the total effective distance travelled from the source.
Clearly, some of those assumptions do not hold in general: In-

teraction with media and matter will typically alter the shape of
the coherence function and scattering through water is not con-
fined to scatter by small particles. However, the illumination of the
diffractive surfaces in Figs. 1 and 8 is dominated by either direct
illumination or by light propagating through the vase. The refrac-
tion through the smooth glass surfaces is readily described by the
Fresnel equations, and the water will scatter and diffuse light to
some degree, therefore those simplifications do not greatly affect
the accuracy of the rendered images. Anyhow, our implementa-
tion serves merely as a proof of concept, demonstrating the global
transport of partially-coherent light.
A major difficulty in path tracing partially-coherent light is the

breakdown of the symmetry of the path integral. The classical
Helmholtz reciprocity property clearly no longer applies when deal-
ing with diffraction (see Section 6 and our supplemental material),
but the problem is more acute: The light’s coherence information
dictates the light-matter interaction behaviour. Therefore, the angu-
lar distribution of the scattered energy morphs (potentially greatly
so) as the coherence properties of light mutate (e.g., see Figs. 4 to 6).
This implies that tracing paths from the camera is not directly possi-
ble, as the coherence properties depend on the source and can only
be traced from the source. Unfortunately, this symmetry of the path
integral is important for many path tracing algorithms and their
performance. This remains an open problem and the development
of more sophisticated approaches and methods for path tracing
partially-coherent beams are left for future work.

Integration into path tracers. The first barrier to integration of
our framework into a modern path tracers is the requirement to
propagate coherence information from the sources. Rendering of
Figs. 1 and 8 was done using a patched version of Mitsuba, where we
extended the bi-directional integrator bdpt to quantify the optical
coherence of a traced beamwhen tracing from a light source. Naïvely
tracing from the sources only results in slow convergence and some
residual noise remains in these figures despite high sample counts
and rendering times (the rendering time of Fig. 1 was about 2 days
using a modern personal computer).
Second, the manner in which the interaction of light with mat-

ter and media alters those coherence properties of light needs to
be quantified. As mentioned, our implementation assumes that all
traced beams retain the Bessel beam shape (as formalised by Eq. (25)),

and the total beam travel distance 𝑟 is sufficient to describe the co-
herence properties of the light. In our implementation, light-matter
interaction is limited to idealised diffusion, by participating media
or diffuse surfaces, and interaction with perfectly smooth interfaces.

9 CONCLUSION AND FUTURE WORK
We have presented a global light transport framework that deals
exclusively with partially coherent light. By deriving a theory that
is firmly grounded in concrete physical foundations, the presented
framework is able to fully account for the electromagnetic nature
of light and reproduce wave-related optical phenomena that arise
with natural light and can be observed using typical (time-averaged)
sensors. By dealing with units of radiance, we have shown that our
framework can be considered as a generalization of the classical
radiometric light transport, and is mostly consistent with the way
modern path tracers operate. The driving assumptions for the ren-
dering equations introduced in this paper (Definitions 4.1 and 8.1)
are that

(i) beams of weakly-coherent natural light produced by distinct
(primary or secondary) sources are mutually uncorrelated,
and thus their superposition is linear (in terms of intensity
and RCSD functions); and

(ii) observation is over very long periods of time (with respect to
the temporal coherent of light).

Clearly, these assumptions break down if we render ultra-low ex-
posure time images or deal with strongly spatially- or temporally-
coherent light: such as when lasing or using narrow-band filtered
(i.e. quasi-monochromatic) light.

In this paper our focus has been on deriving a complete and
generally-applicable theory of the free-space sourcing, propagation
and diffraction of natural (partially-coherent) light. These derived
formulae are essentially exact in the optical far-field. Subsequently,
we demonstrated the application of these formulae to the study
of scatter of explicitly defined surfaces. Due to the generality of
these formulations, computing the scattered light of an arbitrary
surface is both expensive and requires highly detailed, sub-micron
surface topologies. However, for some special cases, e.g., a scratch
in a flat surface, a closed form expression can be found for the
frequency response function T 2, greatly simplifying the numerical
calculations. Such special cases are left for future work. Likewise,
as surfaces are typically described statistically and not explicitly in
computer graphics, it is also of interest to discuss the scattering by
statistical surface models under our formalism.
In addition, we have also derived some basic, idealized light-

matter interaction operators: interaction with perfectly smooth
interfaces and scattering by very small particles in a homogeneous
participating medium. It is of practical importance to formulate
more interesting interaction operators: for example, more general
scattering in participating media (e.g., non-homogeneous media,
large or non-spherical particles); or propagation of light through
a lens system, where partial coherence plays an important role in
quantifying the various diffraction effects that arise. We leave this
more comprehensive analysis of light-matter interactions for future
work.
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A PROPERTIES OF POLARIZATION MATRICES
Let

𝑱 =

[
𝐽11 𝐽12
𝐽21 𝐽22
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𝐸2
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]†〉
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〉 〈
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〉〈
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〉 〈
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〉] (49)

be a polarization matrix, with 𝐸1,2 being some field transverse com-
ponents. Clearly 𝐽21 = 𝐽★12, and 𝑱 is Hermitian, i.e. 𝑱 † = 𝑱 . By
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Schwarz’s inequality the following must hold

|𝐽12 | = |𝐽21 | ≤
√︁
|𝐽11 |

√︁
|𝐽22 | (50)

therefore 𝑱 is positive semi-definite, i.e. 𝑱 ⪰ 0, and thus det 𝑱 ≥
0 and all its eigenvalues are real and non-negative. Any matrix
that fulfils the constraints above is a polarization matrix, notably
𝒲 (®r, ®r, 𝜔) and ℒ(®r, ®r, 𝜔). Note that the determinant and the trace
of 𝑱 are invariant under the choice of the basis that decomposes the
field into the orthogonal transverse components 𝐸1,2.

The polarization matrix lends insight into the state of polarization
of the electromagnetic wave. The degree of correlation is defined as

𝑗12 ≜
1√

𝐽11
√
𝐽22

𝐽12 (51)

Clearly, | 𝑗12 | ≤ 1 (at least in the limit sense). When | 𝑗12 | = 0 and
𝐽11 = 𝐽22, we say the light is randomly polarized or unpolarized.
This can be summarised as (1) under any choice of basis, the trans-
verse field components are uncorrelated; and (2) energy is evenly
distributed in all transverse directions. On the other hand, | 𝑗12 | = 1
implies that the transverse oscillations are fully correlated and such
light is completely polarized. In that case, it trivially follows that

det 𝑱 = 𝐽11 𝐽22 − 𝐽12 (𝐽12)★ = 𝐽11 𝐽22 −
���√︁𝐽11

√︁
𝐽22 𝑗12

���2 = 0 (52)

The degree of correlation 𝑗12 is also invariant under the choice of
transverse basis.

It is always possible to decompose light into an exact superposi-
tion of completely polarized and unpolarized radiation. That is, a
polarization matrix 𝑱 can always be decomposed into

𝑱 = 𝑱 u + 𝑱 p (53)

where eachmatrix is a polarizationmatrix and in addition the follow-
ing holds: det 𝑱 p = 0 and 𝑱 u ∝ 𝑰 . Furthermore, that decomposition is
unique. As a corollary it is easy to show that a completely polarized
matrix can not be non-trivially decomposed (a trivial decomposition
is 𝑱 = 𝛼 𝑱 + (1 − 𝛼)𝑱 ).

B AT THE SHORT-WAVELENGTH LIMIT
The purpose of this appendix is to formally show that at the short-
wavelength limit, 𝑘 → ∞, the RCSD functions can be interpreted
as classical radiance.

Sourcing. Looking at 𝑘 → ∞ limit of the absolute value of the
sourced RCSD function (Definition 5.1), we immediately deduce
that it takes a form of radiance at the short-wavelength limit:

ℒ(𝑘→∞) = lim
𝑘→∞

|𝒮{Λ, 𝜌}| = 𝜌

3

√︂
2
𝜋
𝑰Λ(𝜔)𝛿2 (r̂1 − r̂2) (54)

where 𝛿 is the Dirac delta. The absolute value is taken to discard
phase, as the term 𝑒𝑖𝑘 does not converge. The two-dimensional
Dirac term suggests that for any r̂1, energy arises in the far-field
only in direction r̂2 = r̂1, and vanishes otherwise. The physical im-
plausibility of the singular nature of an RCSD in the form presented
above should not deter the reader: It describes an aphysical process—
propagation of electromagnetic radiation in the short-wavelength
limit—and should only be understood in the sense of a mathematical
representation that encodes radiance information.

Diffraction. We assume an extended aperture. To keep the analysis
simple, we give a planar aperture a uniform constant thickness of
𝐿 > 0, assumed to be small, and denote the extended aperture as
Σ ⊂ R3. The following analysis can be generalized to any realistic
aperture or diffracting region. We substitute the short-wavelength
limit expression that we derived for the RCSD matrix of sourced
natural radiation (Eq. (54)) into the diffraction expression of the
matrix𝚿 (Eq. (31)), and reintroduce the necessary phase information
𝑒𝑖𝑘 (𝑟1−𝑟2) . Then, as before, we take the 𝑘 → ∞ limit of the absolute
value, yielding (up to a constant):
𝚿(𝑘→∞) (r̂1, r̂2, 𝜔)

= 𝑰Λ(𝜔) lim
𝑘→∞

����∫
Σ
d3®r′

∫
Σ
d3®r′′𝛿2 (r̂′ − r̂′′

)
𝑒𝑖𝑘 (𝑟

′−𝑟 ′′)𝑒−𝑖𝑘 (r̂1 ·®r
′−r̂2 ·®r′′)

����
= 𝑰Λ(𝜔) lim

𝑘→∞

�����∫Σ d3®r′ 𝑒−𝑖𝑘 (r̂1−r̂2) ·®r′
∫ 𝑙0 (®r′)+𝐿 (Ω𝑖 )

𝑙0 (®r′)
d𝑙 𝑒𝑖𝑘𝑙𝑒𝑖𝑘𝑙 r̂2 ·Ω𝑖

�����
= 𝑰Λ(𝜔) lim

𝑘→∞

����∫
Σ
d3®r′ 𝑒−𝑖𝑘 (r̂1−r̂2) ·®r′

����
���1 − 𝑒𝑖𝑘𝐿 (Ω𝑖 ) (r̂2 ·Ω𝑖+1)

���
𝑘 |r̂2 · Ω𝑖 + 1| (55)

where Ω𝑖 is the direction to the source, 𝐿(Ω𝑖 ) = 𝐿/|Ω𝑖 · n̂| (with
n̂ being the aperture normal) is the effective aperture thickness
as viewed from direction Ω𝑖 . We used the fact the Dirac term
𝛿2 (r̂′ − r̂′′) constraints the integration to a path integral through
the aperture, viz. ®r′′ = ®r′ − 𝑙Ω𝑖 , and 𝑙0 is the term that ensures
we integrate over the depth of the aperture. The characteristic
function of Σ is 𝐿1 integrable, and by a direct application of the
Riemann–Lebesgue lemma we deduce:

lim
𝑘→∞

����∫
Σ
d3®r′ 𝑒−𝑖𝑘 (r̂1−r̂2) ·®r′

���� = {
0 if r̂1 ≠ r̂2
𝐿𝐴Σ otherwise

(56)

where 𝐴Σ is the cross-sectional area of the aperture, as before. The
second factor vanishes trivially at the limit, unless r̂2 · Ω𝑖 = −1:

lim
𝑘→∞

���1 − 𝑒𝑖𝑘𝐿 (Ω𝑖 ) (r̂2 ·Ω𝑖+1)
���

𝑘 |r̂2 · Ω𝑖 + 1| =

{
0 if r̂2 · Ω𝑖 ≠ −1

𝐿
|Ω𝑖 ·n̂ | otherwise

(57)

Using the above, we finally arrive at the short-wavelength limit
the diffraction operator:

ℒ(𝑘→∞) = lim
𝑘→∞

|𝒟{𝒲, Σ}| ∝ Λ(𝜔)𝛿2 (2Ω𝑖 + r̂1 + r̂2) (58)

(up to a polarization matrix constant). The Dirac term vanishes
unless r̂1 = r̂2 = −Ω𝑖 , implying both that spatial coherence is
exhibited only at r̂1 = r̂2, i.e. the perfectly incoherent “geometrical
optics” approximation, and that far-field radiation only arises in the
direction r̂ = −Ω𝑖 . This means that no diffraction happens at the
aperture, and the incident radiance continues to propagate along the
incidence ray unaffected, as expected. Also note that the above is
essentially the same representation of radiance as the sourced RCSD
(Eq. (54)) in the short-wavelength limit. Furthermore, we can also
conclude that in the short-wavelength limit the diffraction operator
does obey the classical Helmholtz reciprocity condition.

C FRESNEL REFLECTION AND REFRACTION
The Fresnel kinematic equations arise due to the matching con-
ditions implied by Maxwell’s equations at an interface [Zangwill
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2013]. Let 𝑧 = 0 be the flat interface between a pair of media. Let
𝜇1, 𝜇2 be the magnetic permeabilities and 𝜖1, 𝜖2 be the permittivities
of the 𝑧 > 0 medium and the 𝑧 < 0 medium, respectively. Those
values may be complex. Then, 𝜂1,2 = 𝑐

√
𝜇1,2𝜖1,2 denote the (possibly

complex) indices of refraction of the media. Assume that a wave
with wavevector ®k is incident upon the interface from the 𝑧 > 0
half-space. Let ®k𝑅 = ®k− 2(®k · ẑ)ẑ be the reflected wavevector. Snell’s
law of refraction relates the incident angle 𝜃1 that the wavevector
®k makes with the interface, to the angle 𝜃2 between the refracted
wave’s wavevector, denoted ®k𝑇 , and the interface:

𝜂1 sin𝜃1 = 𝜂2 sin𝜃2 (59)

The three wavevectors ®k, ®k𝑅, ®k𝑇 are co-planar.
As mentioned, the polarization of the incident wave plays a role in

its reflection and refraction. It is the common convention to consider
the decomposition of the incident wave into an s-polarized and a
p-polarized component. That is, if {ê𝑠 , ê𝑝 } is the orthogonal basis,
then ê𝑠 · ẑ = 0 and ê𝑝 · (®k × ẑ) = 0. Denoting 𝑟𝑠,𝑝 and 𝑡𝑠,𝑝 as the
(possibly complex) amplitude ratios of the reflected and transmitted
s- and p-polarized waves, respectively, the Fresnel equations become
[Zangwill 2013]:

𝑟𝑠 =
𝑍2 cos𝜃1 − 𝑍1 cos𝜃2
𝑍2 cos𝜃1 + 𝑍1 cos𝜃2

𝑟𝑝 =
𝑍1 cos𝜃1 − 𝑍2 cos𝜃2
𝑍1 cos𝜃1 + 𝑍2 cos𝜃2

(60)

𝑡𝑠 =
2𝑍2 cos𝜃1

𝑍2 cos𝜃1 + 𝑍1 cos𝜃2
𝑡𝑝 =

2𝑍2 cos𝜃1
𝑍1 cos𝜃1 + 𝑍2 cos𝜃2

(61)

where𝑍1,2 =
𝜂1,2
𝑐𝜖1,2

are the intrinsic impedances. For non-magneticme-
dia, i.e. 𝜇1 = 𝜇2 = 1 (or 𝜇0 under SI-units, where 𝜇0 is the free-space
permeability), 𝑍1,2 = 𝑐

𝜂1,2
and thus by writing 𝑍2

𝑍1
= 𝜂1

𝜂2
, Eqs. (60)

and (61) can be rewritten in terms of the indices of refraction 𝜂1,2.

D THE CHURCH POLARIZATION FACTOR
Let 𝜃𝑖 and 𝜃𝑠 be the angles of incidence and reflection, and let
𝜙𝑠 be the azimuthal angle of scattering (the angle between the
projections of the incident and reflected wave-vectors onto the
surface plane). Unlike the Fresnel equations which mandate 𝜃𝑖 = 𝜃𝑠
and 𝜙𝑠 , we now choose the reflected direction at will. Denote the
relative permittivity between the surfaces as 𝜖 = 𝜖2/𝜖1. Then, the
four Church polarization coefficients are [Stover 2012]

𝑞𝑠𝑠 ≜
(𝜖 − 1) cos𝜙𝑠(

cos𝜃𝑖 +
√︁
𝜖 − sin2 𝜃𝑖

) (
cos𝜃𝑠 +

√︁
𝜖 − sin2 𝜃𝑠

) (62)

𝑞𝑠𝑝 ≜
(𝜖 − 1)

√︁
𝜖 − sin2 𝜃𝑠 sin𝜙𝑠(

cos𝜃𝑖 +
√︁
𝜖 − sin2 𝜃𝑖

) (
𝜖 cos𝜃𝑠 +

√︁
𝜖 − sin2 𝜃𝑠

) (63)

𝑞𝑝𝑠 ≜
(𝜖 − 1)

√︁
𝜖 − sin2 𝜃𝑖 sin𝜙𝑠(

𝜖 cos𝜃𝑖 +
√︁
𝜖 − sin2 𝜃𝑖

) (
cos𝜃𝑠 +

√︁
𝜖 − sin2 𝜃𝑠

) (64)

𝑞𝑝𝑝 ≜
(𝜖 − 1)

(√︁
𝜖 − sin2 𝜃𝑠

√︁
𝜖 − sin2 𝜃𝑖 cos𝜙𝑠 − 𝜖 sin𝜃𝑖 sin𝜃𝑠

)(
𝜖 cos𝜃𝑖 +

√︁
𝜖 − sin2 𝜃𝑖

) (
𝜖 cos𝜃𝑠 +

√︁
𝜖 − sin2 𝜃𝑠

) (65)

where the first subscript denotes the polarization of the incident
wave and the second subscript the polarization of the scattered
wave. Note that when the reflection is in the plane of incidence,
i.e. 𝜙𝑠 = 0, the cross-polarization terms vanish, viz. 𝑞𝑠𝑝 = 𝑞𝑝𝑠 = 0.

Likewise, when the reflection is specular, i.e. 𝜙𝑠 = 0 and 𝜃𝑖 = 𝜃𝑠 as
mandated by the law of reflection, the expressions reduce to the
Fresnel equations, that is 𝑞𝑠𝑠 = 𝑟𝑠 and 𝑞𝑝𝑝 = 𝑟𝑝 . It is convenient to
gather those coefficients into a matrix, viz.

𝑸 =

[
𝑞𝑠𝑠 𝑞𝑝𝑠
𝑞𝑠𝑝 𝑞𝑝𝑝

]
(66)

The total scattered energy is then know as the Church polarization
factor and can be written as 𝑄 ≜

∑ |𝑞𝜉𝜁 | 2 = tr
(
𝑸𝑸†

)
.
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